Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms
- URL: http://arxiv.org/abs/2406.13486v1
- Date: Wed, 19 Jun 2024 12:11:42 GMT
- Title: Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms
- Authors: Duy Khanh Lam,
- Abstract summary: This paper adopts a perspective where data gradually and continuously reveal over time.
The performance of these proposed strategies is guaranteed under specific markets.
In stationary and ergodic markets, the so-called Bayesian strategy utilizing true conditional distributions, based on observed past market information during investment, almost surely does not perform better than the proposed strategies in terms of empirical utility, Sharpe ratio, or growth rate, which, in contrast, do not rely on conditional distributions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard approach for constructing a Mean-Variance portfolio involves estimating parameters for the model using collected samples. However, since the distribution of future data may not resemble that of the training set, the out-of-sample performance of the estimated portfolio is worse than one derived with true parameters, which has prompted several innovations for better estimation. Instead of treating the data without a timing aspect as in the common training-backtest approach, this paper adopts a perspective where data gradually and continuously reveal over time. The original model is recast into an online learning framework, which is free from any statistical assumptions, to propose a dynamic strategy of sequential portfolios such that its empirical utility, Sharpe ratio, and growth rate asymptotically achieve those of the true portfolio, derived with perfect knowledge of the future data. When the distribution of future data has a normal shape, the growth rate of wealth is shown to increase by lifting the portfolio along the efficient frontier through the calibration of risk aversion. Since risk aversion cannot be appropriately predetermined, another proposed algorithm updating this coefficient over time forms a dynamic strategy approaching the optimal empirical Sharpe ratio or growth rate associated with the true coefficient. The performance of these proposed strategies is universally guaranteed under specific stochastic markets. Furthermore, in stationary and ergodic markets, the so-called Bayesian strategy utilizing true conditional distributions, based on observed past market information during investment, almost surely does not perform better than the proposed strategies in terms of empirical utility, Sharpe ratio, or growth rate, which, in contrast, do not rely on conditional distributions.
Related papers
- Conformal Predictive Portfolio Selection [10.470114319701576]
We propose a framework for predictive portfolio selection using conformal inference, called Conformal Predictive Portfolio Selection ( CPPS)
Our approach predicts future portfolio returns, computes corresponding prediction intervals, and selects the desirable portfolio based on these intervals.
We demonstrate the effectiveness of our CPPS framework using an AR model and validate its performance through empirical studies.
arXiv Detail & Related papers (2024-10-19T15:42:49Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models.
We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies.
We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries.
arXiv Detail & Related papers (2024-05-02T16:50:47Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Deep Learning Enhanced Realized GARCH [6.211385208178938]
We propose a new approach to volatility modeling by combining deep learning (LSTM) and realized volatility measures.
This LSTM-enhanced realized GARCH framework incorporates and distills modeling advances from financial econometrics, high frequency trading data and deep learning.
arXiv Detail & Related papers (2023-02-16T00:20:43Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Deep Learning Statistical Arbitrage [0.0]
We propose a unifying conceptual framework for statistical arbitrage and develop a novel deep learning solution.
We construct arbitrage portfolios of similar assets as residual portfolios from conditional latent asset pricing factors.
We extract the time series signals of these residual portfolios with one of the most powerful machine learning time-series solutions.
arXiv Detail & Related papers (2021-06-08T00:48:25Z) - Improving the Robustness of Trading Strategy Backtesting with Boltzmann
Machines and Generative Adversarial Networks [0.0]
This article explores the use of machine learning models to build a market generator.
The underlying idea is to simulate artificial multi-dimensional financial time series, whose statistical properties are the same as those observed in the financial markets.
The article proposes then a new approach for estimating the probability distribution of backtest statistics.
arXiv Detail & Related papers (2020-07-09T14:37:45Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.