EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer
- URL: http://arxiv.org/abs/2503.07027v1
- Date: Mon, 10 Mar 2025 08:07:17 GMT
- Title: EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer
- Authors: Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, Jiaming Liu,
- Abstract summary: We propose EasyControl, a novel framework designed to unify condition-guided diffusion transformers with high efficiency and flexibility.<n>Our framework is built on three key innovations. First, we introduce a lightweight Condition Injection LoRA Module.<n>Second, we propose a Position-Aware Training Paradigm. This approach standardizes input conditions to fixed resolutions, allowing the generation of images with arbitrary aspect ratios and flexible resolutions.<n>Third, we develop a Causal Attention Mechanism combined with the KV Cache technique, adapted for conditional generation tasks.
- Score: 15.879712910520801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Unet-based diffusion models, such as ControlNet and IP-Adapter, have introduced effective spatial and subject control mechanisms. However, the DiT (Diffusion Transformer) architecture still struggles with efficient and flexible control. To tackle this issue, we propose EasyControl, a novel framework designed to unify condition-guided diffusion transformers with high efficiency and flexibility. Our framework is built on three key innovations. First, we introduce a lightweight Condition Injection LoRA Module. This module processes conditional signals in isolation, acting as a plug-and-play solution. It avoids modifying the base model weights, ensuring compatibility with customized models and enabling the flexible injection of diverse conditions. Notably, this module also supports harmonious and robust zero-shot multi-condition generalization, even when trained only on single-condition data. Second, we propose a Position-Aware Training Paradigm. This approach standardizes input conditions to fixed resolutions, allowing the generation of images with arbitrary aspect ratios and flexible resolutions. At the same time, it optimizes computational efficiency, making the framework more practical for real-world applications. Third, we develop a Causal Attention Mechanism combined with the KV Cache technique, adapted for conditional generation tasks. This innovation significantly reduces the latency of image synthesis, improving the overall efficiency of the framework. Through extensive experiments, we demonstrate that EasyControl achieves exceptional performance across various application scenarios. These innovations collectively make our framework highly efficient, flexible, and suitable for a wide range of tasks.
Related papers
- Efficient Multi-Instance Generation with Janus-Pro-Dirven Prompt Parsing [53.295515505026096]
Janus-Pro-driven Prompt Parsing is a prompt- parsing module that bridges text understanding and layout generation.
MIGLoRA is a parameter-efficient plug-in integrating Low-Rank Adaptation into UNet (SD1.5) and DiT (SD3) backbones.
The proposed method achieves state-of-the-art performance on COCO and LVIS benchmarks while maintaining parameter efficiency.
arXiv Detail & Related papers (2025-03-27T00:59:14Z) - OminiControl2: Efficient Conditioning for Diffusion Transformers [68.3243031301164]
We present OminiControl2, an efficient framework that achieves efficient image-conditional image generation.
OminiControl2 introduces two key innovations: (1) a dynamic compression strategy that streamlines conditional inputs by preserving only the most semantically relevant tokens during generation, and (2) a conditional feature reuse mechanism that computes condition token features only once and reuses them across denoising steps.
arXiv Detail & Related papers (2025-03-11T10:50:14Z) - OminiControl: Minimal and Universal Control for Diffusion Transformer [68.3243031301164]
OminiControl is a framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models.<n>At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone.<n>OminiControl addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions.
arXiv Detail & Related papers (2024-11-22T17:55:15Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLM is a novel framework designed to enable the instant derivation of large language models of arbitrary shapes.
AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications.
arXiv Detail & Related papers (2024-11-15T22:02:28Z) - FlexEControl: Flexible and Efficient Multimodal Control for Text-to-Image Generation [99.4649330193233]
Controllable text-to-image (T2I) diffusion models generate images conditioned on both text prompts and semantic inputs of other modalities like edge maps.
We propose a novel Flexible and Efficient method, FlexEControl, for controllable T2I generation.
arXiv Detail & Related papers (2024-05-08T06:09:11Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.
We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.
We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z) - AQUILA: Communication Efficient Federated Learning with Adaptive
Quantization in Device Selection Strategy [27.443439653087662]
This paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to handle these issues.
AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates.
Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods.
arXiv Detail & Related papers (2023-08-01T03:41:47Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.