論文の概要: PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2503.07153v1
- Date: Mon, 10 Mar 2025 10:27:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:15.997023
- Title: PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning
- Title(参考訳): PTMs-TSCIL事前学習モデルによるクラスインクリメンタルラーニング
- Authors: Yuanlong Wu, Mingxing Nie, Tao Zhu, Liming Chen, Huansheng Ning, Yaping Wan,
- Abstract要約: 時系列データのためのクラスインクリメンタルラーニング(CIL)は、新たな知識獲得のための破滅的な忘れと可塑性に対する安定性のバランスをとる上で、課題に直面している。
PTMを用いた時系列クラスインクリメンタルラーニング(TSCIL)の第1回研究について紹介する。
- 参考スコア(独自算出の注目度): 7.784244204592032
- License:
- Abstract: Class-incremental learning (CIL) for time series data faces critical challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition, particularly under real-world constraints where historical data access is restricted. While pre-trained models (PTMs) have shown promise in CIL for vision and NLP domains, their potential in time series class-incremental learning (TSCIL) remains underexplored due to the scarcity of large-scale time series pre-trained models. Prompted by the recent emergence of large-scale pre-trained models (PTMs) for time series data, we present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL). Our approach leverages frozen PTM backbones coupled with incrementally tuning the shared adapter, preserving generalization capabilities while mitigating feature drift through knowledge distillation. Furthermore, we introduce a Feature Drift Compensation Network (DCN), designed with a novel two-stage training strategy to precisely model feature space transformations across incremental tasks. This allows for accurate projection of old class prototypes into the new feature space. By employing DCN-corrected prototypes, we effectively enhance the unified classifier retraining, mitigating model feature drift and alleviating catastrophic forgetting. Extensive experiments on five real-world datasets demonstrate state-of-the-art performance, with our method yielding final accuracy gains of 1.4%-6.1% across all datasets compared to existing PTM-based approaches. Our work establishes a new paradigm for TSCIL, providing insights into stability-plasticity optimization for continual learning systems.
- Abstract(参考訳): 時系列データのためのクラスインクリメンタルラーニング(CIL)は、特に歴史的データアクセスが制限された現実の制約の下で、新しい知識獲得のための破滅的な忘れと可塑性に対する安定性のバランスをとる上で重要な課題に直面している。
事前学習モデル(PTM)は、視覚領域とNLP領域においてCILにおいて有望であることを示しているが、大規模な時系列事前学習モデルの不足により、時系列クラス増分学習(TSCIL)におけるそれらの可能性はまだ未探索である。
時系列データに対する大規模事前学習モデル (PTM) の出現により, PTM を用いた時系列クラスインクリメンタルラーニング (TSCIL) を初めて行った。
提案手法では, 凍結したPTMバックボーンと共有アダプタの漸進的な調整, 一般化能力の保存, 知識蒸留による特徴ドリフトの緩和を両立させる。
さらに,段階的タスク間の特徴空間変換を正確にモデル化する新たな2段階トレーニング戦略を考案した特徴ドリフト補償ネットワーク(DCN)を導入する。
これにより、古いクラスのプロトタイプを新しい機能空間に正確に投影することができる。
我々は,DCN補正試作機を用いて,統一型分類器再訓練,モデル特徴漂流の緩和,破滅的忘れの緩和を効果的に進める。
5つの実世界のデータセットに対する大規模な実験では、既存のPTMベースのアプローチと比較して、最終的な精度は1.4%-6.1%向上した。
本研究は, TSCILの新しいパラダイムを確立し, 連続学習システムにおける安定性・塑性最適化の知見を提供する。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models [26.484208658326857]
継続的な学習は、過去の知識を忘れることに抵抗しながら、データストリームにおける新しい概念を漸進的に獲得することを目的としている。
強力な事前学習モデル(PTM)の台頭に伴い、インクリメンタル学習システムのトレーニングへの関心が高まっている。
論文 参考訳(メタデータ) (2024-11-04T15:34:30Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - FeTT: Continual Class Incremental Learning via Feature Transformation Tuning [19.765229703131876]
継続的学習(CL)は、静的で囲われた環境から動的で複雑なシナリオまで、ディープモデルを拡張することを目的としている。
最近のCLモデルは、パラメータ効率の良い微調整戦略を持つ事前学習モデルの利用に徐々に移行している。
本稿では,すべてのタスクにまたがる非パラメトリック微調整バックボーン機能に対するFeTTモデルを提案する。
論文 参考訳(メタデータ) (2024-05-20T06:33:50Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - Rethinking Class-incremental Learning in the Era of Large Pre-trained Models via Test-Time Adaptation [20.62749699589017]
クラス増分学習(クラス増分学習、class-incremental learning、CIL)は、クラスを新しいタスクから分類する逐次学習を伴う課題である。
本稿では,最初のタスクでアダプタを用いてPTMを微調整するTTACIL(Test-Time Adaptation for Class-Incremental Learning)を提案する。
私たちのTTACILは、PTMの豊富な機能によって各タスクの恩恵を受けながら、一切忘れることはありません。
論文 参考訳(メタデータ) (2023-10-17T13:06:39Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに新しいクラスに適応することを目的としている。
近年の事前訓練は大きな進歩を遂げており、CILには膨大な事前訓練モデル(PTM)が利用できるようになった。
CILの中核となる要素は、モデル更新の適応性と知識伝達の一般化性である。
論文 参考訳(メタデータ) (2023-03-13T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。