論文の概要: MIRAM: Masked Image Reconstruction Across Multiple Scales for Breast Lesion Risk Prediction
- arxiv url: http://arxiv.org/abs/2503.07157v2
- Date: Sat, 22 Mar 2025 08:01:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:29:37.838020
- Title: MIRAM: Masked Image Reconstruction Across Multiple Scales for Breast Lesion Risk Prediction
- Title(参考訳): MIRAM:乳房病変リスク予測のための複数尺度にわたる仮面画像再構成
- Authors: Hung Q. Vo, Pengyu Yuan, Zheng Yin, Kelvin K. Wong, Chika F. Ezeana, Son T. Ly, Stephen T. C. Wong, Hien V. Nguyen,
- Abstract要約: Masked Image Modeling (MIM) はより強力なSSL技術として登場した。
本稿では,より困難なプリテキストタスクを中心に,スケーラブルで実用的なSSLアプローチを提案する。
我々の仮説は、高解像度画像の再構成により、より微細な空間的詳細に対応することができるというものである。
- 参考スコア(独自算出の注目度): 2.0199924721373392
- License:
- Abstract: Self-supervised learning (SSL) has garnered substantial interest within the machine learning and computer vision communities. Two prominent approaches in SSL include contrastive-based learning and self-distillation utilizing cropping augmentation. Lately, masked image modeling (MIM) has emerged as a more potent SSL technique, employing image inpainting as a pretext task. MIM creates a strong inductive bias toward meaningful spatial and semantic understanding. This has opened up new opportunities for SSL to contribute not only to classification tasks but also to more complex applications like object detection and image segmentation. Building upon this progress, our research paper introduces a scalable and practical SSL approach centered around more challenging pretext tasks that facilitate the acquisition of robust features. Specifically, we leverage multi-scale image reconstruction from randomly masked input images as the foundation for feature learning. Our hypothesis posits that reconstructing high-resolution images enables the model to attend to finer spatial details, particularly beneficial for discerning subtle intricacies within medical images. The proposed SSL features help improve classification performance on the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) dataset. In pathology classification, our method demonstrates a 3\% increase in average precision (AP) and a 1\% increase in the area under the receiver operating characteristic curve (AUC) when compared to state-of-the-art (SOTA) algorithms. Moreover, in mass margins classification, our approach achieves a 4\% increase in AP and a 2\% increase in AUC.
- Abstract(参考訳): 自己教師型学習(SSL)は、機械学習とコンピュータビジョンコミュニティにおいて大きな関心を集めている。
SSLの2つの顕著なアプローチは、コントラストベースの学習と、収穫増強を利用した自己蒸留である。
近年、マスク付き画像モデリング (MIM) はより強力なSSL技術として登場し、プリテキストタスクとして画像のインパインティングを利用している。
MIMは意味のある空間的および意味的理解に対して強い帰納的バイアスを生み出す。
これにより、SSLが分類タスクだけでなく、オブジェクト検出やイメージセグメンテーションといったより複雑なアプリケーションにも貢献する新たな機会が開かれた。
この進歩を踏まえて、我々の研究論文は、堅牢な機能の獲得を容易にする、より困難なプレテキストタスクを中心に、スケーラブルで実用的なSSLアプローチを導入しています。
具体的には、ランダムにマスキングされた入力画像からのマルチスケール画像再構成を特徴学習の基礎として活用する。
我々の仮説は、高解像度画像の再構成により、特に医療画像の微妙な複雑さを識別するために、より細かな空間的細部への参画が可能になることを示唆している。
提案するSSL機能は,CBIS-DDSM(Curated Breast Imaging Subset of Digital Database for Screening Mammography)データセットの分類性能の向上に役立つ。
病理分類では, 平均精度 (AP) が3倍, 受信機動作特性曲線 (AUC) の領域が1倍に増加した。
さらに, マスマージン分類ではAPが4倍, AUCが2倍に増加した。
関連論文リスト
- Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
本稿では,RS画像セマンティックセグメンテーションタスクのための,新しい半教師付きマルチスケール不確かさとクロスTeacher-Student Attention(MUCA)モデルを提案する。
MUCAは、マルチスケールの不確実性整合正則化を導入することにより、ネットワークの異なる層における特徴写像間の整合性を制限する。
MUCAは学生ネットワークの誘導にクロス教師・学生の注意機構を使用し、学生ネットワークにより差別的な特徴表現を構築するよう誘導する。
論文 参考訳(メタデータ) (2025-01-18T11:57:20Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
本稿では,地域コントラスト(LRC)を統合した新しいコントラスト学習フレームワークを提案する。
提案手法では,Felzenszwalbのアルゴリズムによるスーパーピクセルの同定と,新しいコントラッシブサンプリング損失を用いた局所コントラスト学習を行う。
論文 参考訳(メタデータ) (2023-04-06T22:43:13Z) - A Dual-branch Self-supervised Representation Learning Framework for
Tumour Segmentation in Whole Slide Images [12.961686610789416]
自己教師付き学習(SSL)は、スライドイメージ全体のアノテーションオーバーヘッドを低減する代替ソリューションとして登場した。
これらのSSLアプローチは、識別画像の特徴を学習する際の性能を制限するマルチレゾリューションWSIを扱うために設計されていない。
マルチ解像度WSIから画像特徴を効果的に学習できるDSF-WSI(Dual-branch SSL Framework for WSI tumour segmentation)を提案する。
論文 参考訳(メタデータ) (2023-03-20T10:57:28Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
皮膚科画像から自己教師付き特徴を学習するために特に最適化されたGraVISを提案する。
GraVISは、病変のセグメンテーションと疾患分類のタスクにおいて、転送学習と自己教師型学習を著しく上回っている。
論文 参考訳(メタデータ) (2023-01-11T11:38:37Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - Self-Supervised Deep Learning to Enhance Breast Cancer Detection on
Screening Mammography [2.9082470896148425]
本稿では、この問題を解決するために、強化に基づく自己教師付き学習(SSL)技術について検討する。
乳がん検出を例として,まずマンモグラム特異的な形質転換パラダイムを同定する。
本研究では,一様タイル付きパッチの予測から画像全体への事前学習モデルを変換する手法と,分類性能を向上させるアテンションベースプーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-16T03:47:01Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
自己教師付き学習のためのマスク付き画像モデル(MIM)フレームワークであるADIOSを提案する。
対向目的物を用いてマスキング機能と画像エンコーダを同時に学習する。
さまざまなタスクやデータセットに対する最先端の自己教師付き学習(SSL)メソッドを一貫して改善する。
論文 参考訳(メタデータ) (2022-01-31T10:23:23Z) - Spectral Superresolution of Multispectral Imagery with Joint Sparse and
Low-Rank Learning [29.834065415830764]
MS画像のスペクトル超解像 (SSR) は, 逆画像における高視差のため, 困難であり, あまり研究されていない。
重なり合う領域から低ランクのHS-MS辞書ペアを共同学習することにより,MS画像のスペクトル化を図る,ジョイントスパースとローランク学習(J-SLoL)と呼ばれるシンプルで効果的な手法を開発した。
論文 参考訳(メタデータ) (2020-07-28T06:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。