論文の概要: Multi-Modal 3D Mesh Reconstruction from Images and Text
- arxiv url: http://arxiv.org/abs/2503.07190v1
- Date: Mon, 10 Mar 2025 11:18:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:52:15.233339
- Title: Multi-Modal 3D Mesh Reconstruction from Images and Text
- Title(参考訳): 画像とテキストからのマルチモーダル3Dメッシュ再構成
- Authors: Melvin Reka, Tessa Pulli, Markus Vincze,
- Abstract要約: 少ない入力画像から3Dメッシュを再構成する言語誘導型少数ショット3D再構成法を提案する。
テクスチャとテクスチャの精度と品質の観点から,本手法の評価を行った。
- 参考スコア(独自算出の注目度): 7.9471205712560264
- License:
- Abstract: 6D object pose estimation for unseen objects is essential in robotics but traditionally relies on trained models that require large datasets, high computational costs, and struggle to generalize. Zero-shot approaches eliminate the need for training but depend on pre-existing 3D object models, which are often impractical to obtain. To address this, we propose a language-guided few-shot 3D reconstruction method, reconstructing a 3D mesh from few input images. In the proposed pipeline, receives a set of input images and a language query. A combination of GroundingDINO and Segment Anything Model outputs segmented masks from which a sparse point cloud is reconstructed with VGGSfM. Subsequently, the mesh is reconstructed with the Gaussian Splatting method SuGAR. In a final cleaning step, artifacts are removed, resulting in the final 3D mesh of the queried object. We evaluate the method in terms of accuracy and quality of the geometry and texture. Furthermore, we study the impact of imaging conditions such as viewing angle, number of input images, and image overlap on 3D object reconstruction quality, efficiency, and computational scalability.
- Abstract(参考訳): 6Dオブジェクトのポーズ推定はロボット工学では不可欠だが、従来は大規模なデータセット、高い計算コスト、一般化の難しさを必要とする訓練されたモデルに依存していた。
ゼロショットアプローチは、トレーニングの必要性を排除しますが、既存の3Dオブジェクトモデルに依存します。
そこで本研究では,少ない入力画像から3Dメッシュを再構成する言語誘導型少数ショット3D再構成手法を提案する。
提案するパイプラインでは,入力画像と言語クエリのセットを受信する。
GroundingDINOとSegment Anything Modelの組み合わせは、スペアポイント雲をVGGSfMで再構成したセグメンテッドマスクを出力する。
その後、メッシュをガウススティング法SuGARで再構成する。
最終クリーニングステップでは、アーティファクトが取り除かれ、クエリされたオブジェクトの最終的な3Dメッシュが生成される。
テクスチャとテクスチャの精度と品質の観点から,本手法の評価を行った。
さらに、視角、入力画像数、画像重なりが3次元オブジェクト再構成の品質、効率、計算スケーラビリティに与える影響について検討した。
関連論文リスト
- Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123は、一視点画像から部分認識された3D再構成のための新しいフレームワークである。
ニューラルレンダリングフレームワークにコントラスト学習を導入し、部分認識機能空間を学習する。
クラスタリングに基づくアルゴリズムも開発され、再構成されたモデルから3次元部分分割結果を自動的に導出する。
論文 参考訳(メタデータ) (2024-05-27T07:10:21Z) - Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
人間のインタラクションを最小限に抑えた3次元再構成法であるTotal-Decomを提案する。
提案手法は,Segment Anything Model (SAM) とハイブリッド型暗黙的なニューラルサーフェス表現をシームレスに統合し,メッシュベースの領域成長技術を用いて正確な3次元オブジェクト分解を行う。
提案手法をベンチマークデータセット上で広範囲に評価し,アニメーションやシーン編集などの下流アプリケーションの可能性を示す。
論文 参考訳(メタデータ) (2024-03-28T11:12:33Z) - Farm3D: Learning Articulated 3D Animals by Distilling 2D Diffusion [67.71624118802411]
本稿では,カテゴリー固有の3D再構成器の学習方法であるFarm3Dについて述べる。
本稿では,Stable Diffusion などの画像生成装置を用いて,合成学習データを生成するフレームワークを提案する。
我々のネットワークは、単分子再構成や合成などの分析に利用でき、ビデオゲームのようなリアルタイムアプリケーションのための音響資産を生成することができる。
論文 参考訳(メタデータ) (2023-04-20T17:59:34Z) - Anything-3D: Towards Single-view Anything Reconstruction in the Wild [61.090129285205805]
本稿では,一連の視覚言語モデルとSegment-Anythingオブジェクトセグメンテーションモデルを組み合わせた方法論的フレームワークであるAnything-3Dを紹介する。
提案手法では、BLIPモデルを用いてテキスト記述を生成し、Segment-Anythingモデルを用いて関心対象を効果的に抽出し、テキスト・画像拡散モデルを用いて物体を神経放射場へ持ち上げる。
論文 参考訳(メタデータ) (2023-04-19T16:39:51Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
1枚の画像から被写体の3次元表面を再構築することは難しい問題である。
本稿では,1枚の画像から3次元合成とオブジェクトポーズ推定を行う新しい手法を提案する。
提案手法は,複数の実世界のデータセットにまたがって,最先端の再構築性能を実現する。
論文 参考訳(メタデータ) (2023-02-24T20:37:27Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Unsupervised Severely Deformed Mesh Reconstruction (DMR) from a
Single-View Image [26.464091507125826]
単視点画像から3次元形状を推定するテンプレートベースの手法を導入し、再構成メッシュを下流タスクに適用する。
本手法は3次元メッシュを忠実に再構築し,魚の群集長計測における最先端の精度を実現する。
論文 参考訳(メタデータ) (2022-01-23T21:46:30Z) - Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving
Objects [115.71874459429381]
本研究では, 物体の3次元形状, テクスチャ, 動きを単一動画像から共同で再構成する新しい課題について述べる。
従来の手法では2次元画像領域でのみ遅延問題に対処するが、3次元領域における全ての物体特性の厳密なモデリングは任意の物体の動きの正確な記述を可能にする。
論文 参考訳(メタデータ) (2021-06-16T13:18:08Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
微分レンダリングは、シングルビュー3Dレコンストラクションに適用できる非常に成功した技術である。
電流は、ある3d再構成対象のレンダリング画像と、与えられたマッチング視点からの接地画像との間のピクセルによる損失を利用して、3d形状のパラメータを最適化する。
再構成された3次元点群の投影が地上真理物体のシルエットをどの程度覆うかを評価する新しい効果的な損失関数を提案する。
論文 参考訳(メタデータ) (2021-03-05T00:02:18Z) - CoReNet: Coherent 3D scene reconstruction from a single RGB image [43.74240268086773]
我々は1つのRBG画像のみを入力として与えられた1つの物体の形状を再構築する深層学習の進歩の上に構築する。
提案する3つの拡張は,(1)局所的な2次元情報を物理的に正しい方法で出力3Dボリュームに伝播するレイトレーシングスキップ接続,(2)翻訳同変モデルの構築を可能にするハイブリッド3Dボリューム表現,(3)全体オブジェクトの形状を捉えるために調整された再構成損失である。
すべての物体がカメラに対して一貫した1つの3次元座標フレームに居住し、3次元空間内では交差しないコヒーレントな再構成を実現する。
論文 参考訳(メタデータ) (2020-04-27T17:53:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。