Human Machine Co-Adaptation Model and Its Convergence Analysis
- URL: http://arxiv.org/abs/2503.07319v1
- Date: Mon, 10 Mar 2025 13:36:36 GMT
- Title: Human Machine Co-Adaptation Model and Its Convergence Analysis
- Authors: Steven W. Su, Yaqi Li, Kairui Guo, Rob Duffield,
- Abstract summary: The key to robot-assisted rehabilitation lies in the design of the human-machine interface, which must accommodate the needs of both patients and machines.<n>We introduce a novel approach based on the Cooperative Adaptive Markov Decision Process (CAMDPs) model to address the fundamental aspects of the interactive learning process.
- Score: 2.517406775855265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key to robot-assisted rehabilitation lies in the design of the human-machine interface, which must accommodate the needs of both patients and machines. Current interface designs primarily focus on machine control algorithms, often requiring patients to spend considerable time adapting. In this paper, we introduce a novel approach based on the Cooperative Adaptive Markov Decision Process (CAMDPs) model to address the fundamental aspects of the interactive learning process, offering theoretical insights and practical guidance. We establish sufficient conditions for the convergence of CAMDPs and ensure the uniqueness of Nash equilibrium points. Leveraging these conditions, we guarantee the system's convergence to a unique Nash equilibrium point. Furthermore, we explore scenarios with multiple Nash equilibrium points, devising strategies to adjust both Value Evaluation and Policy Improvement algorithms to enhance the likelihood of converging to the global minimal Nash equilibrium point. Through numerical experiments, we illustrate the effectiveness of the proposed conditions and algorithms, demonstrating their applicability and robustness in practical settings. The proposed conditions for convergence and the identification of a unique optimal Nash equilibrium contribute to the development of more effective adaptive systems for human users in robot-assisted rehabilitation.
Related papers
- PER-DPP Sampling Framework and Its Application in Path Planning [5.158004370485019]
Decision-centric reinforcement learning frameworks have gained prominence in advanced control system research.<n>This study introduces methodological improvements to address sample challenges in reinforcement learning experience replay mechanisms.<n>By incorporating determinant point processes (DPP) for diversity assessment, we develop a dual-criteria sampling framework with adaptive selection protocols.
arXiv Detail & Related papers (2025-03-10T14:58:16Z) - Convergence of Decentralized Actor-Critic Algorithm in General-sum Markov Games [3.8779763612314633]
We study the properties of learning algorithms in general-sum Markov games.<n>In particular, we focus on a decentralized algorithm where each agent adopts an actor-critic learning dynamic.
arXiv Detail & Related papers (2024-09-06T20:49:11Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Improved Genetic Algorithm Based on Greedy and Simulated Annealing Ideas for Vascular Robot Ordering Strategy [7.51372615162241]
This study presents a comprehensive approach for optimizing the acquisition, utilization, and maintenance of ABLVR vascular robots in healthcare settings.
Considering the dynamic healthcare environment, our approach includes a robust resource allocation model for robotic vessels and operators.
We incorporate the unique requirements of the adaptive learning process for operators and the maintenance needs of robotic components.
arXiv Detail & Related papers (2024-03-28T15:14:03Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Between Rate-Distortion Theory & Value Equivalence in Model-Based
Reinforcement Learning [21.931580762349096]
We introduce an algorithm for synthesizing simple and useful approximations of the environment from which an agent might still recover near-optimal behavior.
We recognize the information-theoretic nature of this lossy environment compression problem and use the appropriate tools of rate-distortion theory to make mathematically precise how value equivalence can lend tractability to otherwise intractable sequential decision-making problems.
arXiv Detail & Related papers (2022-06-04T17:09:46Z) - DULA and DEBA: Differentiable Ergonomic Risk Models for Postural
Assessment and Optimization in Ergonomically Intelligent pHRI [10.063075560468798]
We introduce DULA and DEBA, differentiable and continuous ergonomics models learned to replicate the popular and scientifically validated RULA and REBA assessments with more than 99% accuracy.
We show that DULA and DEBA provide assessment comparable to RULA and REBA while providing computational benefits when being used in postural optimization.
arXiv Detail & Related papers (2022-05-06T22:24:01Z) - The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation
Optimization under Uncertain Feature Positions [53.478856119297284]
We introduce the probabilistic normal epipolar constraint (PNEC) that overcomes the limitation by accounting for anisotropic and inhomogeneous uncertainties in the feature positions.
In experiments on synthetic data, we demonstrate that the novel PNEC yields more accurate rotation estimates than the original NEC.
We integrate the proposed method into a state-of-the-art monocular rotation-only odometry system and achieve consistently improved results for the real-world KITTI dataset.
arXiv Detail & Related papers (2022-04-05T14:47:11Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Robust Value Iteration for Continuous Control Tasks [99.00362538261972]
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well.
We present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain.
We show that robust value is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm.
arXiv Detail & Related papers (2021-05-25T19:48:35Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.