The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation
Optimization under Uncertain Feature Positions
- URL: http://arxiv.org/abs/2204.02256v1
- Date: Tue, 5 Apr 2022 14:47:11 GMT
- Title: The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation
Optimization under Uncertain Feature Positions
- Authors: Dominik Muhle, Lukas Koestler, Nikolaus Demmel, Florian Bernard and
Daniel Cremers
- Abstract summary: We introduce the probabilistic normal epipolar constraint (PNEC) that overcomes the limitation by accounting for anisotropic and inhomogeneous uncertainties in the feature positions.
In experiments on synthetic data, we demonstrate that the novel PNEC yields more accurate rotation estimates than the original NEC.
We integrate the proposed method into a state-of-the-art monocular rotation-only odometry system and achieve consistently improved results for the real-world KITTI dataset.
- Score: 53.478856119297284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The estimation of the relative pose of two camera views is a fundamental
problem in computer vision. Kneip et al. proposed to solve this problem by
introducing the normal epipolar constraint (NEC). However, their approach does
not take into account uncertainties, so that the accuracy of the estimated
relative pose is highly dependent on accurate feature positions in the target
frame. In this work, we introduce the probabilistic normal epipolar constraint
(PNEC) that overcomes this limitation by accounting for anisotropic and
inhomogeneous uncertainties in the feature positions. To this end, we propose a
novel objective function, along with an efficient optimization scheme that
effectively minimizes our objective while maintaining real-time performance. In
experiments on synthetic data, we demonstrate that the novel PNEC yields more
accurate rotation estimates than the original NEC and several popular relative
rotation estimation algorithms. Furthermore, we integrate the proposed method
into a state-of-the-art monocular rotation-only odometry system and achieve
consistently improved results for the real-world KITTI dataset.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
We analyze algorithms for zeroth-order entropy composite objectives, focusing on dependence on dimensionality.
This is achieved by exploiting low dimensional structure of the decision set using the mirror descent method with an estimation alike function.
To improve the gradient, we replace the classic sampling method based on Rademacher and show that the mini-batch method copes with non-Eucli geometry.
arXiv Detail & Related papers (2022-08-09T07:36:25Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
We investigate non-batch optimization problems where the objective is an expectation over smooth loss functions.
Our work builds on the STORM algorithm, in conjunction with a novel approach to adaptively set the learning rate and momentum parameters.
arXiv Detail & Related papers (2021-11-01T15:43:36Z) - Estimation of Local Average Treatment Effect by Data Combination [3.655021726150368]
It is important to estimate the local average treatment effect (LATE) when compliance with a treatment assignment is incomplete.
Previously proposed methods for LATE estimation required all relevant variables to be jointly observed in a single dataset.
We propose a weighted least squares estimator that enables simpler model selection by avoiding the minimax objective formulation.
arXiv Detail & Related papers (2021-09-11T03:51:48Z) - Sparse Representations of Positive Functions via First and Second-Order
Pseudo-Mirror Descent [15.340540198612823]
We consider expected risk problems when the range of the estimator is required to be nonnegative.
We develop first and second-order variants of approximation mirror descent employing emphpseudo-gradients.
Experiments demonstrate favorable performance on ingeneous Process intensity estimation in practice.
arXiv Detail & Related papers (2020-11-13T21:54:28Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Neural Contraction Metrics for Robust Estimation and Control: A Convex
Optimization Approach [6.646482960350819]
This paper presents a new deep learning-based framework for robust nonlinear estimation and control using the concept of a Neural Contraction Metric (NCM)
The NCM uses a deep long short-term memory recurrent neural network for a global approximation of an optimal contraction metric.
We demonstrate how to exploit NCMs to design an online optimal estimator and controller for nonlinear systems with bounded disturbances utilizing their duality.
arXiv Detail & Related papers (2020-06-08T05:29:38Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
We show that the problem of robust mean estimation in the presence of a constant adversarial fraction can be solved by gradient descent.
Our work establishes an intriguing connection between the near non-lemma estimation and robust statistics.
arXiv Detail & Related papers (2020-05-04T10:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.