Fully Unsupervised Annotation of C. Elegans
- URL: http://arxiv.org/abs/2503.07348v1
- Date: Mon, 10 Mar 2025 14:03:18 GMT
- Title: Fully Unsupervised Annotation of C. Elegans
- Authors: Christoph Karg, Sebastian Stricker, Lisa Hutschenreiter, Bogdan Savchynskyy, Dagmar Kainmueller,
- Abstract summary: We present a novel approach for unsupervised multi-graph matching, which applies to problems for which a Gaussian distribution of keypoint features can be assumed.<n>We leverage cycle consistency as loss for self-supervised learning, and determine Gaussian parameters through Bayesian Optimization.<n>Our fully unsupervised approach enables us to reach the accuracy of state-of-the-art supervised methodology for the use case of annotating cell nuclei in 3D microscopy images of the worm C. elegans.
- Score: 4.4618764205189985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we present a novel approach for unsupervised multi-graph matching, which applies to problems for which a Gaussian distribution of keypoint features can be assumed. We leverage cycle consistency as loss for self-supervised learning, and determine Gaussian parameters through Bayesian Optimization, yielding a highly efficient approach that scales to large datasets. Our fully unsupervised approach enables us to reach the accuracy of state-of-the-art supervised methodology for the use case of annotating cell nuclei in 3D microscopy images of the worm C. elegans. To this end, our approach yields the first unsupervised atlas of C. elegans, i.e. a model of the joint distribution of all of its cell nuclei, without the need for any ground truth cell annotation. This advancement enables highly efficient annotation of cell nuclei in large microscopy datasets of C. elegans. Beyond C. elegans, our approach offers fully unsupervised construction of cell-level atlases for any model organism with a stereotyped cell lineage, and thus bears the potential to catalyze respective comparative developmental studies in a range of further species.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data [5.234149080137045]
High sparsity and complex noise patterns inherent in scRNA-seq data present significant challenges for traditional clustering methods.
We propose a deep clustering method, Attention-Enhanced Structural Deep Embedding Graph Clustering (scASDC)
scASDC integrates multiple advanced modules to improve clustering accuracy and robustness.
arXiv Detail & Related papers (2024-08-09T09:10:36Z) - Scalable Amortized GPLVMs for Single Cell Transcriptomics Data [9.010523724015398]
Dimensionality reduction is crucial for analyzing large-scale single-cell RNA-seq data.
We introduce an improved model, the amortized variational model (BGPLVM)
BGPLVM is tailored for single-cell RNA-seq with specialized encoder, kernel, and likelihood designs.
arXiv Detail & Related papers (2024-05-06T21:54:38Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
We introduce scUNC, an innovative multi-view clustering approach tailored for single-cell data.
scUNC seamlessly integrates information from different views without the need for a predefined number of clusters.
We conducted a comprehensive evaluation of scUNC using three distinct single-cell datasets.
arXiv Detail & Related papers (2023-11-28T08:34:58Z) - Geodesic Sinkhorn for Fast and Accurate Optimal Transport on Manifolds [53.110934987571355]
We propose Geodesic Sinkhorn -- based on a heat kernel on a manifold graph.
We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy.
arXiv Detail & Related papers (2022-11-02T00:51:35Z) - Tracking by weakly-supervised learning and graph optimization for
whole-embryo C. elegans lineages [5.4560798878815735]
We build upon a recent method for nuclei tracking that combines weakly-supervised learning from a small set of nuclei center point annotations with an integer linear program (ILP) for optimal cell lineage extraction.
Our work specifically addresses the following challenging properties of C. elegans embryo recordings.
arXiv Detail & Related papers (2022-08-24T12:17:59Z) - A Greedy and Optimistic Approach to Clustering with a Specified
Uncertainty of Covariates [6.231304401179968]
We propose a greedy and optimistic clustering (GOC) algorithm that finds better feature candidates over empirical uncertainty sets.
As an important application, we apply the GOC algorithm to synthetic datasets of the orbital properties of stars generated through our numerical simulation mimicking the formation process of the Milky Way.
arXiv Detail & Related papers (2022-04-18T07:54:24Z) - Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation
and Classification [4.642724910208435]
We propose a multi-stage annotation pipeline to enable the collection of large-scale datasets for histology image analysis.
We generate the largest known nuclear instance segmentation and classification dataset, containing nearly half a million labelled nuclei.
arXiv Detail & Related papers (2021-08-25T11:58:52Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
Unsupervised learning methods that don't necessarily encounter anomalies in training would be immensely useful.
We develop a novel hyperspherical Variational Auto-Encoder (VAE) via stereographic projections with a gyroplane layer.
We present state-of-the-art results on visual anomaly benchmarks in precision manufacturing and inspection, demonstrating real-world utility in industrial AI scenarios.
arXiv Detail & Related papers (2020-06-19T20:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.