Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters
- URL: http://arxiv.org/abs/2311.17103v1
- Date: Tue, 28 Nov 2023 08:34:58 GMT
- Title: Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters
- Authors: Dayu Hu, Zhibin Dong, Ke Liang, Jun Wang, Siwei Wang and Xinwang Liu
- Abstract summary: We introduce scUNC, an innovative multi-view clustering approach tailored for single-cell data.
scUNC seamlessly integrates information from different views without the need for a predefined number of clusters.
We conducted a comprehensive evaluation of scUNC using three distinct single-cell datasets.
- Score: 64.31109141089598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-cell multi-view clustering enables the exploration of cellular
heterogeneity within the same cell from different views. Despite the
development of several multi-view clustering methods, two primary challenges
persist. Firstly, most existing methods treat the information from both
single-cell RNA (scRNA) and single-cell Assay of Transposase Accessible
Chromatin (scATAC) views as equally significant, overlooking the substantial
disparity in data richness between the two views. This oversight frequently
leads to a degradation in overall performance. Additionally, the majority of
clustering methods necessitate manual specification of the number of clusters
by users. However, for biologists dealing with cell data, precisely determining
the number of distinct cell types poses a formidable challenge. To this end, we
introduce scUNC, an innovative multi-view clustering approach tailored for
single-cell data, which seamlessly integrates information from different views
without the need for a predefined number of clusters. The scUNC method
comprises several steps: initially, it employs a cross-view fusion network to
create an effective embedding, which is then utilized to generate initial
clusters via community detection. Subsequently, the clusters are automatically
merged and optimized until no further clusters can be merged. We conducted a
comprehensive evaluation of scUNC using three distinct single-cell datasets.
The results underscored that scUNC outperforms the other baseline methods.
Related papers
- HBIC: A Biclustering Algorithm for Heterogeneous Datasets [0.0]
Biclustering is an unsupervised machine-learning approach aiming to cluster rows and columns simultaneously in a data matrix.
We introduce a biclustering approach called HBIC, capable of discovering meaningful biclusters in complex heterogeneous data.
arXiv Detail & Related papers (2024-08-23T16:48:10Z) - scGHSOM: Hierarchical clustering and visualization of single-cell and CRISPR data using growing hierarchical SOM [0.8452349885923507]
We propose a comprehensive gene-cell dependency visualization via unsupervised clustering, Growing Hierarchical Self-Organizing Map (GHSOM)
GHSOM is applied to cluster samples in a hierarchical structure such that the self-growth structure of clusters satisfies the required variations between and within.
We present two innovative visualization tools: Cluster Feature Map and Cluster Distribution Map.
arXiv Detail & Related papers (2024-07-24T04:01:09Z) - Joint Analysis of Single-Cell Data across Cohorts with Missing Modalities [13.675134007270774]
We propose (Single-Cell Cross-Cohort Cross-Category) integration, a novel framework that learns unified cell representations under domain shift.
Our generative approach learns rich cross-modal and cross-domain relationships that enable imputation of these missing modalities.
arXiv Detail & Related papers (2024-05-18T12:32:21Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - scICML: Information-theoretic Co-clustering-based Multi-view Learning
for the Integrative Analysis of Single-cell Multi-omics data [0.0]
We develop a novel information-theoretic co-clustering-based multi-view learning (scICML) method for multi-omics single-cell data integration.
scICML utilizes co-clusterings to aggregate similar features for each view of data and uncover the common clustering pattern for cells.
Our experiments on four real-world datasets demonstrate that scICML improves the overall clustering performance and provides biological insights into the data analysis of peripheral blood mononuclear cells.
arXiv Detail & Related papers (2022-05-19T12:41:55Z) - Deep Incomplete Multi-View Multiple Clusterings [41.43164409639238]
We introduce a deep incomplete multi-view multiple clusterings framework, which achieves the completion of data view and multiple shared representations simultaneously.
Experiments on benchmark datasets confirm that DiMVMC outperforms the state-of-the-art competitors in generating multiple clusterings with high diversity and quality.
arXiv Detail & Related papers (2020-10-02T08:01:24Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.