HGO-YOLO: Advancing Anomaly Behavior Detection with Hierarchical Features and Lightweight Optimized Detection
- URL: http://arxiv.org/abs/2503.07371v1
- Date: Mon, 10 Mar 2025 14:29:12 GMT
- Title: HGO-YOLO: Advancing Anomaly Behavior Detection with Hierarchical Features and Lightweight Optimized Detection
- Authors: Qizhi Zheng, Zhongze Luo, Meiyan Guo, Xinzhu Wang, Renqimuge Wu, Qiu Meng, Guanghui Dong,
- Abstract summary: This study proposes a model called HGO-YOLO, which integrates the HGNetv2 architecture into YOLOv8.<n> Evaluation results show that the proposed algorithm achieves a mAP@0.5 of 87.4% and a recall rate of 81.1%, with a model size of only 4.6 MB and a frame rate of 56 FPS on the CPU.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and real-time object detection is crucial for anomaly behavior detection, especially in scenarios constrained by hardware limitations, where balancing accuracy and speed is essential for enhancing detection performance. This study proposes a model called HGO-YOLO, which integrates the HGNetv2 architecture into YOLOv8. This combination expands the receptive field and captures a wider range of features while simplifying model complexity through GhostConv. We introduced a lightweight detection head, OptiConvDetect, which utilizes parameter sharing to construct the detection head effectively. Evaluation results show that the proposed algorithm achieves a mAP@0.5 of 87.4% and a recall rate of 81.1%, with a model size of only 4.6 MB and a frame rate of 56 FPS on the CPU. HGO-YOLO not only improves accuracy by 3.0% but also reduces computational load by 51.69% (from 8.9 GFLOPs to 4.3 GFLOPs), while increasing the frame rate by a factor of 1.7. Additionally, real-time tests were conducted on Raspberry Pi4 and NVIDIA platforms. These results indicate that the HGO-YOLO model demonstrates superior performance in anomaly behavior detection.
Related papers
- LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
We focus on design choices of neural network architectures for efficient object detection based on FLOP.
We propose several optimizations to enhance the efficiency of YOLO-based models.
This paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLA is an advanced object detection model building on YOLOv5.
We first introduce an additional detection layer for small objects in the neck network pyramid architecture.
This module uses sliding window feature extraction, which effectively minimizes both computational demand and the number of parameters.
arXiv Detail & Related papers (2024-02-22T05:55:17Z) - Fast vehicle detection algorithm based on lightweight YOLO7-tiny [7.7600847187608135]
This paper proposes a lightweight vehicle detection algorithm based on YOLOv7-tiny (You Only Look Once version seven) called Ghost-YOLOv7.
The width of model is scaled to 0.5 and the standard convolution of the backbone network is replaced with Ghost convolution to achieve a lighter network and improve the detection speed.
A Ghost Decouoled Head (GDH) is employed for accurate prediction of vehicle location and species.
arXiv Detail & Related papers (2023-04-12T17:28:30Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework.
We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS 2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone 2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia
arXiv Detail & Related papers (2023-02-15T06:05:14Z) - Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex
Fire Scenarios [8.721557548002737]
This paper proposes a lightweight fire detection algorithm of Light-YOLOv5 that achieves a balance of speed and accuracy.
Experiments show that Light-YOLOv5 improves mAP by 3.3% compared to the original algorithm, reduces the number of parameters by 27.1%, decreases the computation by 19.1%, achieves FPS of 91.1.
arXiv Detail & Related papers (2022-08-29T08:36:04Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
Untrimmed video understanding such as temporal action detection (TAD) often suffers from the pain of huge demand for computing resources.
We build a unified framework for efficient end-to-end temporal action detection (ETAD)
ETAD achieves state-of-the-art performance on both THUMOS-14 and ActivityNet-1.3.
arXiv Detail & Related papers (2022-05-14T21:16:21Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices [13.62426382827205]
PP-PicoDet family of real-time object detectors achieves superior performance on object detection for mobile devices.
Models achieve better trade-offs between accuracy and latency compared to other popular models.
arXiv Detail & Related papers (2021-11-01T12:53:17Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Neural Network Virtual Sensors for Fuel Injection Quantities with
Provable Performance Specifications [71.1911136637719]
We show how provable guarantees can be naturally applied to other real world settings.
We show how specific intervals of fuel injection quantities can be targeted to maximize robustness for certain ranges.
arXiv Detail & Related papers (2020-06-30T23:33:17Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
We propose a flexible convolutional module, namely generalized OctConv (gOctConv), to efficiently utilize both in-stage and cross-stages multi-scale features.
We build an extremely light-weighted model, namely CSNet, which achieves comparable performance with about 0.2% (100k) of large models on popular object detection benchmarks.
arXiv Detail & Related papers (2020-03-12T07:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.