Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex
Fire Scenarios
- URL: http://arxiv.org/abs/2208.13422v1
- Date: Mon, 29 Aug 2022 08:36:04 GMT
- Title: Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex
Fire Scenarios
- Authors: Hao Xu, Bo Li and Fei Zhong
- Abstract summary: This paper proposes a lightweight fire detection algorithm of Light-YOLOv5 that achieves a balance of speed and accuracy.
Experiments show that Light-YOLOv5 improves mAP by 3.3% compared to the original algorithm, reduces the number of parameters by 27.1%, decreases the computation by 19.1%, achieves FPS of 91.1.
- Score: 8.721557548002737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In response to the existing object detection algorithms are applied to
complex fire scenarios with poor detection accuracy, slow speed and difficult
deployment., this paper proposes a lightweight fire detection algorithm of
Light-YOLOv5 that achieves a balance of speed and accuracy. First, the last
layer of backbone network is replaced with SepViT Block to enhance the contact
of backbone network to global information; second, a Light-BiFPN neck network
is designed to lighten the model while improving the feature extraction; third,
Global Attention Mechanism (GAM) is fused into the network to make the model
more focused on global dimensional features; finally, we use the Mish
activation function and SIoU loss to increase the convergence speed and improve
the accuracy at the same time. The experimental results show that Light-YOLOv5
improves mAP by 3.3% compared to the original algorithm, reduces the number of
parameters by 27.1%, decreases the computation by 19.1%, achieves FPS of 91.1.
Even compared to the latest YOLOv7-tiny, the mAP of Light-YOLOv5 is 6.8%
higher, which shows the effectiveness of the algorithm.
Related papers
- LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO [0.9062164411594178]
LAM-YOLO is an object detection model specifically designed for drone-based images.
We introduce a light-occlusion attention mechanism to enhance the visibility of small targets under different lighting conditions.
Second, we utilize an improved SIB-IoU as the regression loss function to accelerate model convergence and enhance localization accuracy.
arXiv Detail & Related papers (2024-11-01T10:00:48Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
We focus on design choices of neural network architectures for efficient object detection based on FLOP.
We propose several optimizations to enhance the efficiency of YOLO-based models.
This paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - One-Shot Learning for Periocular Recognition: Exploring the Effect of
Domain Adaptation and Data Bias on Deep Representations [59.17685450892182]
We investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition.
We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images.
Traditional algorithms like SIFT can outperform CNNs in situations with limited data.
arXiv Detail & Related papers (2023-07-11T09:10:16Z) - Fast vehicle detection algorithm based on lightweight YOLO7-tiny [7.7600847187608135]
This paper proposes a lightweight vehicle detection algorithm based on YOLOv7-tiny (You Only Look Once version seven) called Ghost-YOLOv7.
The width of model is scaled to 0.5 and the standard convolution of the backbone network is replaced with Ghost convolution to achieve a lighter network and improve the detection speed.
A Ghost Decouoled Head (GDH) is employed for accurate prediction of vehicle location and species.
arXiv Detail & Related papers (2023-04-12T17:28:30Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices [13.62426382827205]
PP-PicoDet family of real-time object detectors achieves superior performance on object detection for mobile devices.
Models achieve better trade-offs between accuracy and latency compared to other popular models.
arXiv Detail & Related papers (2021-11-01T12:53:17Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Research on Optimization Method of Multi-scale Fish Target Fast
Detection Network [11.99307231512725]
The accuracy of testing the network with 2000 fish images reached 94.37%, and the computational complexity of the network BFLOPS was only 5.47.
The results show that BTP-Yolov3 has smaller model parameters, faster calculation speed, and lower energy consumption during operation.
arXiv Detail & Related papers (2021-04-11T16:53:34Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
Dilation convolution is a critical mutant of standard convolution neural network to control effective receptive fields and handle large scale variance of objects.
We propose a new mutant of dilated convolution, namely inception (dilated) convolution where the convolutions have independent dilation among different axes, channels and layers.
We explore a practical method for fitting the complex inception convolution to the data, a simple while effective dilation search algorithm(EDO) based on statistical optimization is developed.
arXiv Detail & Related papers (2020-12-25T14:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.