論文の概要: CATPlan: Loss-based Collision Prediction in End-to-End Autonomous Driving
- arxiv url: http://arxiv.org/abs/2503.07425v1
- Date: Mon, 10 Mar 2025 15:10:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:45:57.925012
- Title: CATPlan: Loss-based Collision Prediction in End-to-End Autonomous Driving
- Title(参考訳): CATPlan: エンドツーエンド自動運転における損失に基づく衝突予測
- Authors: Ziliang Xiong, Shipeng Liu, Nathaniel Helgesen, Joakim Johnander, Per-Erik Forssen,
- Abstract要約: 本稿では,エンド・ツー・エンドの自動運転システムによって予測される計画軌道の不確実性を推定する。
我々はCATPlanと呼ばれる新しい軽量モジュールを導入し、動作をデコードし、エンド・ツー・エンドのADシステムを部分的に監視するために使用される衝突損失の推定に埋め込みを計画する。
我々は、CATPlanを安全クリティカルでナーフベースのクローズドループベンチマークであるNeuroNCAPで評価し、GMMベースのベースラインの平均精度に対して54.8%の相対的な改善で衝突を検出することに成功した。
- 参考スコア(独自算出の注目度): 1.9739631699200297
- License:
- Abstract: In recent years, there has been increased interest in the design, training, and evaluation of end-to-end autonomous driving (AD) systems. One often overlooked aspect is the uncertainty of planned trajectories predicted by these systems, despite awareness of their own uncertainty being key to achieve safety and robustness. We propose to estimate this uncertainty by adapting loss prediction from the uncertainty quantification literature. To this end, we introduce a novel light-weight module, dubbed CATPlan, that is trained to decode motion and planning embeddings into estimates of the collision loss used to partially supervise end-to-end AD systems. During inference, these estimates are interpreted as collision risk. We evaluate CATPlan on the safety-critical, nerf-based, closed-loop benchmark NeuroNCAP and find that it manages to detect collisions with a $54.8\%$ relative improvement to average precision over a GMM-based baseline in which the predicted trajectory is compared to the forecasted trajectories of other road users. Our findings indicate that the addition of CATPlan can lead to safer end-to-end AD systems and hope that our work will spark increased interest in uncertainty quantification for such systems.
- Abstract(参考訳): 近年、エンド・ツー・エンド・エンド・自動運転(AD)システムの設計、訓練、評価への関心が高まっている。
しばしば見落とされがちな側面は、これらのシステムによって予測される計画された軌道の不確実性である。
本稿では、不確実性定量化文献からの損失予測を適応させることにより、この不確実性を推定することを提案する。
この目的のために、我々はCATPlanと呼ばれる新しい軽量モジュールを導入し、このモジュールは動きをデコードし、エンド・ツー・エンドのADシステムを部分的に監督するために使用される衝突損失の推定に組込みを計画する。
推測中、これらの推定値は衝突リスクと解釈される。
我々は,CATPlanを安全クリティカルなクローズドループベンチマークNeuroNCAPで評価し,予測軌跡を他の道路利用者の予測軌跡と比較したGMMベースラインの平均精度に対して,54.8 %の相対精度で衝突を検出できることを確認した。
以上の結果から, CATPlanの添加により, エンド・ツー・エンドADシステムの安全性が向上し, これらのシステムに対する不確実性定量化への関心が高まることを期待できる。
関連論文リスト
- Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - A Certifiable Security Patch for Object Tracking in Self-Driving Systems
via Historical Deviation Modeling [22.753164675538457]
自動運転車における物体追跡の安全性に関する最初の体系的研究について述べる。
我々は,KF(Kalman Filter)に基づくメインストリームマルチオブジェクトトラッカー(MOT)が,マルチセンサ融合機構が有効であっても安全でないことを証明した。
我々は、KFベースのMOTのための単純かつ効果的なセキュリティパッチを提案し、その中核は、KFの観測と予測に対する焦点のバランスをとるための適応戦略である。
論文 参考訳(メタデータ) (2022-07-18T12:30:24Z) - Long-Tail Prediction Uncertainty Aware Trajectory Planning for
Self-driving Vehicles [12.645597960926601]
近年の研究では、長い尾の運転シナリオ分布の後にデータセット上で訓練されたディープラーニングモデルが、尾の予測エラーに悩まされることが示されている。
この研究は、スパースデータによる高い誤差を定量化するための予測モデルの不確実性の概念を定義する。
提案手法は,不十分なデータによる予測の不確実性の下で軌道計画の安全性を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-07-02T10:17:31Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - End-to-end Uncertainty-based Mitigation of Adversarial Attacks to
Automated Lane Centering [12.11406399284803]
我々は,認識,計画,制御モジュール全体にわたる敵の攻撃の影響に対処するエンドツーエンドアプローチを提案する。
われわれのアプローチは、敵攻撃の影響を効果的に軽減し、元のOpenPilotよりも55%から90%改善できる。
論文 参考訳(メタデータ) (2021-02-27T22:36:32Z) - The efficacy of Neural Planning Metrics: A meta-analysis of PKL on
nuScenes [77.83263286776938]
自律運転(AD)における高性能物体検出システムの役割
通常、平均的精度で評価されるパフォーマンスは、シーン内のアクターの向きや距離を考慮していない。
近年、フィリオンらは、プランナーの軌道と基底経路のKL分散に基づく神経計画測度(PKL)を提案した。
論文 参考訳(メタデータ) (2020-10-19T09:32:48Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - CARPAL: Confidence-Aware Intent Recognition for Parallel Autonomy [24.358828325716427]
本稿では,確率的ドライバ軌道だけでなく,下流タスクの予測に付随する実用統計も予測する,新しいマルチタスク意図認識ニューラルネットワークを提案する。
我々は,現実的な都市運転データセット上でオンラインシステムをテストし,基準手法と比較して,リコールとフォールアウトの指標でその利点を実証する。
論文 参考訳(メタデータ) (2020-03-18T01:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。