論文の概要: RePO: ReLU-based Preference Optimization
- arxiv url: http://arxiv.org/abs/2503.07426v1
- Date: Mon, 10 Mar 2025 15:11:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:14.739895
- Title: RePO: ReLU-based Preference Optimization
- Title(参考訳): RePO: ReLU ベースの参照最適化
- Authors: Junkang Wu, Kexin Huang, Xue Wang, Jinyang Gao, Bolin Ding, Jiancan Wu, Xiangnan He, Xiang Wang,
- Abstract要約: 本稿では,ReLUに基づくPreference Optimization (RePO)を提案する。
RePOは、ロジスティック重み付けが二項しきい値に崩壊するSimPOの制限ケース(「infty$」の略)として特徴付けられる。
AlpacaEval 2 と Arena-Hard の実証結果は、RePO が複数のベースモデルで DPO と SimPO を上回っていることを示している。
- 参考スコア(独自算出の注目度): 47.87283407390014
- License:
- Abstract: Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
- Abstract(参考訳): 大規模言語モデル(LLM)を人間の好みで調整することは、実世界の展開には不可欠だが、RLHFのような既存の手法は計算と安定性の課題に直面している。
DPOは単一ハイパーパラメータ$\beta$でオフラインパラダイムを確立するが、SimPOのようなその後のメソッドは二重パラメータ$\beta$, $\gamma$で複雑性を再導入する。
このアルゴリズムは,(1)SimPOの参照フリーマージンを保ちながら勾配解析により$\beta$を除去し,(2)自然に自明なペアをフィルタするReLUベースの最大マージン損失を採用するという2つの進歩を通じて,$\beta$を除去する。
理論的には、RePOはSimPOの制限ケース(\beta \to \infty$)として特徴付けられる。
AlpacaEval 2 と Arena-Hard の実証的な結果から、RePO は DPO と SimPO を複数のベースモデルで上回り、チューニングするのに1つのハイパーパラメータしか必要としないことを示した。
関連論文リスト
- $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
$chi2$-Preference Optimization(chi$PO)は、オーバー最適化に対して確実に堅牢なオフラインアライメントアルゴリズムである。
$chi$POは、正規化による不確実性に直面して悲観主義の原理を実装している。
$chi$POの単純さと強力な保証により、オーバー最適化に対して確実に堅牢な、実用的で汎用的なオフラインアライメントアルゴリズムとなった。
論文 参考訳(メタデータ) (2024-07-18T11:08:40Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
生成モデルの時代における最小限のRLアルゴリズムであるREBELを提案する。
理論的には、自然ポリシーグラディエントのような基本的なRLアルゴリズムはREBELの変種と見なすことができる。
我々はREBELが言語モデリングと画像生成に一貫したアプローチを提供し、PPOやDPOとより強くあるいは類似した性能を実現することを発見した。
論文 参考訳(メタデータ) (2024-04-25T17:20:45Z) - Reinforcement Learning from Human Feedback with Active Queries [59.855433734053555]
現在の強化学習アプローチは、多くの場合、大量の人間による嗜好データを必要とする。
本稿では,能動学習の成功に触発された問合せ効率の高いRLHF手法を提案する。
実験の結果,ADPOは人間の好みに対するクエリの約半分しか作成していないが,最先端のDPO法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2024-02-14T18:58:40Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
我々は、重要サンプリングの観点から、単純で直感的な非政治的選好最適化アルゴリズムを提案し、これを最大選好最適化(MPO)と呼ぶ。
MPOは、RLHFとIPOの目的を、独占的アルゴリズムであると同時に組み合わせることで、両方の世界のベストを達成している。
論文 参考訳(メタデータ) (2023-12-27T06:34:54Z) - A Theoretical Analysis of Optimistic Proximal Policy Optimization in
Linear Markov Decision Processes [13.466249082564213]
本稿では,全情報フィードバックを用いた表層線形MDPに対するPPOの楽観的変種を提案する。
既存のポリシーベースのアルゴリズムと比較して, 線形MDPと逆線形MDPの双方において, 完全な情報付きで, 最先端の後悔点を達成している。
論文 参考訳(メタデータ) (2023-05-15T17:55:24Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
安全強化学習(SRL)問題では、エージェントは期待される全報酬を最大化し、一定の制約の違反を避けるために環境を探索する。
これは、大域的最適ポリシーを持つSRLアルゴリズムの最初の分析である。
論文 参考訳(メタデータ) (2020-11-11T16:05:14Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。