Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
- URL: http://arxiv.org/abs/2503.07435v2
- Date: Mon, 17 Mar 2025 11:06:08 GMT
- Title: Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
- Authors: Riccardo Mazzieri, Jacopo Pegoraro, Michele Rossi,
- Abstract summary: We tackle the problem of Open-set Gait Recognition from sparse mmWave radar point clouds.<n>This is the first work addressing open-set gait recognition with sparse point cloud data.<n>We release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects.
- Score: 1.0104586293349587
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods, on average, and across multiple openness levels.
Related papers
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.
We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.
The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - MimicGait: A Model Agnostic approach for Occluded Gait Recognition using Correlational Knowledge Distillation [40.75942030089628]
We propose MimicGait, a model-agnostic approach for gait recognition in the presence of occlusions.
We train the network using a multi-instance correlational distillation loss to capture both inter-sequence and intra-sequence correlations in the occluded gait patterns of a subject.
We demonstrate the effectiveness of our approach on challenging real-world datasets like GREW, Gait3D and BRIAR.
arXiv Detail & Related papers (2025-01-26T20:23:44Z) - Generalizable Indoor Human Activity Recognition Method Based on Micro-Doppler Corner Point Cloud and Dynamic Graph Learning [12.032590125621155]
Through-the-wall radar (TWR) human activity recognition can be achieved by fusing micro-Doppler signature extraction and intelligent decision-making algorithms.
This paper proposes a generalizable indoor human activity recognition method based on micro-Doppler corner point cloud and dynamic graph learning.
arXiv Detail & Related papers (2024-10-10T02:24:07Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Implicit neural representation for change detection [15.741202788959075]
Most commonly used approaches to detecting changes in point clouds are based on supervised methods.
We propose an unsupervised approach that comprises two components: Implicit Neural Representation (INR) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes.
We apply our method to a benchmark dataset comprising simulated LiDAR point clouds for urban sprawling.
arXiv Detail & Related papers (2023-07-28T09:26:00Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - mmFall: Fall Detection using 4D MmWave Radar and a Hybrid Variational
RNN AutoEncoder [0.4588028371034407]
mmFall is an emerging millimeter-wave (mmWave) radar sensor to collect the human body's point cloud along with the body centroid.
A fall is claimed to have occurred when the spike in anomaly level and the drop in centroid height occur simultaneously.
To overcome the randomness in radar data, the proposed VRAE uses variational inference, a probabilistic approach rather than the traditional deterministic approach.
arXiv Detail & Related papers (2020-03-05T00:37:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.