Is a Good Foundation Necessary for Efficient Reinforcement Learning? The Computational Role of the Base Model in Exploration
- URL: http://arxiv.org/abs/2503.07453v2
- Date: Thu, 13 Mar 2025 23:15:55 GMT
- Title: Is a Good Foundation Necessary for Efficient Reinforcement Learning? The Computational Role of the Base Model in Exploration
- Authors: Dylan J. Foster, Zakaria Mhammedi, Dhruv Rohatgi,
- Abstract summary: We introduce a new computational framework for RL with language models, in which the learner interacts with the model through a sampling oracle.<n>We show that coverage, while not necessary for data efficiency, lower bounds the runtime of any algorithm in our framework.<n>We introduce a new algorithm, SpannerSampling, which obtains optimal data efficiency and is computationally efficient whenever the pre-trained model enjoys sufficient coverage.
- Score: 32.77845864484552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language model alignment (or, reinforcement learning) techniques that leverage active exploration -- deliberately encouraging the model to produce diverse, informative responses -- offer the promise of super-human capabilities. However, current understanding of algorithm design primitives for computationally efficient exploration with language models is limited. To better understand how to leverage access to powerful pre-trained generative models to improve the efficiency of exploration, we introduce a new computational framework for RL with language models, in which the learner interacts with the model through a sampling oracle. Focusing on the linear softmax model parameterization, we provide new results that reveal the computational-statistical tradeoffs of efficient exploration: 1. Necessity of coverage: Coverage refers to the extent to which the pre-trained model covers near-optimal responses -- a form of hidden knowledge. We show that coverage, while not necessary for data efficiency, lower bounds the runtime of any algorithm in our framework. 2. Inference-time exploration: We introduce a new algorithm, SpannerSampling, which obtains optimal data efficiency and is computationally efficient whenever the pre-trained model enjoys sufficient coverage, matching our lower bound. SpannerSampling leverages inference-time computation with the pre-trained model to reduce the effective search space for exploration. 3. Insufficiency of training-time interventions: We contrast the result above by showing that training-time interventions that produce proper policies cannot achieve similar guarantees in polynomial time. 4. Computational benefits of multi-turn exploration: Finally, we show that under additional representational assumptions, one can achieve improved runtime (replacing sequence-level coverage with token-level coverage) through multi-turn exploration.
Related papers
- Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models [0.0]
We propose using prior model knowledge to guide the exploration process to speed up reinforcement learning.
We provide theoretical guarantees on the convergence of the Q-function to the optimal Q-function under the proposed class of exploring policies.
arXiv Detail & Related papers (2025-04-08T12:33:38Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.<n>On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.<n>On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Posterior Sampling for Deep Reinforcement Learning [0.0]
This paper introduces Posterior Sampling for Deep Reinforcement Learning (PSDRL), the first truly scalable approximation of Posterior Sampling for Reinforcement Learning.
Experiments on the Atari benchmark show that PSDRL significantly outperforms previous state-of-the-art attempts at scaling up posterior sampling.
arXiv Detail & Related papers (2023-04-30T13:23:50Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.