Split-n-Chain: Privacy-Preserving Multi-Node Split Learning with Blockchain-Based Auditability
- URL: http://arxiv.org/abs/2503.07570v2
- Date: Tue, 15 Apr 2025 06:22:26 GMT
- Title: Split-n-Chain: Privacy-Preserving Multi-Node Split Learning with Blockchain-Based Auditability
- Authors: Mukesh Sahani, Binanda Sengupta,
- Abstract summary: Split-n-Chain is a variant of split learning where the layers of the network are split among several distributed nodes.<n>We show that Split-n-Chain is efficient, in terms of time required to execute different phases, and the training loss trend is similar to that for the same neural network when implemented in a monolithic fashion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning, when integrated with a large amount of training data, has the potential to outperform machine learning in terms of high accuracy. Recently, privacy-preserving deep learning has drawn significant attention of the research community. Different privacy notions in deep learning include privacy of data provided by data-owners and privacy of parameters and/or hyperparameters of the underlying neural network. Federated learning is a popular privacy-preserving execution environment where data-owners participate in learning the parameters collectively without leaking their respective data to other participants. However, federated learning suffers from certain security/privacy issues. In this paper, we propose Split-n-Chain, a variant of split learning where the layers of the network are split among several distributed nodes. Split-n-Chain achieves several privacy properties: data-owners need not share their training data with other nodes, and no nodes have access to the parameters and hyperparameters of the neural network (except that of the respective layers they hold). Moreover, Split-n-Chain uses blockchain to audit the computation done by different nodes. Our experimental results show that: Split-n-Chain is efficient, in terms of time required to execute different phases, and the training loss trend is similar to that for the same neural network when implemented in a monolithic fashion.
Related papers
- Differentially Private Decentralized Learning with Random Walks [15.862152253607496]
We characterize the privacy guarantees of decentralized learning with random walk algorithms, where a model is updated by traveling from one node to another along the edges of a communication graph.
Our results reveal that random walk algorithms tends to yield better privacy guarantees than gossip algorithms for nodes close from each other.
arXiv Detail & Related papers (2024-02-12T08:16:58Z) - Hierarchical Training of Deep Neural Networks Using Early Exiting [42.186536611404165]
Deep neural networks provide state-of-the-art accuracy for vision tasks but they require significant resources for training.
Deep neural networks are trained on cloud servers far from the edge devices that acquire the data.
In this study, a novel hierarchical training method for deep neural networks is proposed that uses early exits in a divided architecture between edge and cloud workers.
arXiv Detail & Related papers (2023-03-04T11:30:16Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - Two-Bit Aggregation for Communication Efficient and Differentially
Private Federated Learning [79.66767935077925]
In federated learning (FL), a machine learning model is trained on multiple nodes in a decentralized manner, while keeping the data local and not shared with other nodes.
The information sent from the nodes to the server may reveal some details about each node's local data, thus raising privacy concerns.
A novel two-bit aggregation algorithm is proposed with guaranteed differential privacy and reduced uplink communication overhead.
arXiv Detail & Related papers (2021-10-06T19:03:58Z) - Spatio-Temporal Split Learning for Privacy-Preserving Medical Platforms:
Case Studies with COVID-19 CT, X-Ray, and Cholesterol Data [10.169998593773915]
Patient records are one of the most sensitive private information that is not usually shared among institutes.
This paper presents a distributed deep neural network framework, which is a turning point in allowing collaboration among privacy-sensitive organizations.
arXiv Detail & Related papers (2021-08-20T04:47:02Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
Estimation [109.11580756757611]
Deep ensembles perform better than a single network thanks to the diversity among their members.
Recent approaches regularize predictions to increase diversity; however, they also drastically decrease individual members' performances.
We introduce a novel training criterion called DICE: it increases diversity by reducing spurious correlations among features.
arXiv Detail & Related papers (2021-01-14T10:53:26Z) - Towards Scalable and Privacy-Preserving Deep Neural Network via
Algorithmic-Cryptographic Co-design [28.789702559193675]
We propose SPNN - a Scalable and Privacy-preserving deep Neural Network learning framework.
From cryptographic perspective, we propose using two types of cryptographic techniques, i.e., secret sharing and homomorphic encryption.
Experimental results conducted on real-world datasets demonstrate the superiority of SPNN.
arXiv Detail & Related papers (2020-12-17T02:26:16Z) - POSEIDON: Privacy-Preserving Federated Neural Network Learning [8.103262600715864]
POSEIDON is a first of its kind in the regime of privacy-preserving neural network training.
It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data.
It trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.
arXiv Detail & Related papers (2020-09-01T11:06:31Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.