Differentially Private Decentralized Learning with Random Walks
- URL: http://arxiv.org/abs/2402.07471v2
- Date: Tue, 4 Jun 2024 15:46:22 GMT
- Title: Differentially Private Decentralized Learning with Random Walks
- Authors: Edwige Cyffers, Aurélien Bellet, Jalaj Upadhyay,
- Abstract summary: We characterize the privacy guarantees of decentralized learning with random walk algorithms, where a model is updated by traveling from one node to another along the edges of a communication graph.
Our results reveal that random walk algorithms tends to yield better privacy guarantees than gossip algorithms for nodes close from each other.
- Score: 15.862152253607496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The popularity of federated learning comes from the possibility of better scalability and the ability for participants to keep control of their data, improving data security and sovereignty. Unfortunately, sharing model updates also creates a new privacy attack surface. In this work, we characterize the privacy guarantees of decentralized learning with random walk algorithms, where a model is updated by traveling from one node to another along the edges of a communication graph. Using a recent variant of differential privacy tailored to the study of decentralized algorithms, namely Pairwise Network Differential Privacy, we derive closed-form expressions for the privacy loss between each pair of nodes where the impact of the communication topology is captured by graph theoretic quantities. Our results further reveal that random walk algorithms tends to yield better privacy guarantees than gossip algorithms for nodes close from each other. We supplement our theoretical results with empirical evaluation on synthetic and real-world graphs and datasets.
Related papers
- A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
We propose using link local differential privacy over decentralized nodes to train graph neural networks.
Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology.
Our approach outperforms existing methods in terms of accuracy under varying privacy budgets.
arXiv Detail & Related papers (2023-09-06T17:53:31Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances.
We propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP.
arXiv Detail & Related papers (2022-10-02T14:41:02Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
federated learning is motivated by the privacy concern as it does not allow to transmit private data but only intermediate updates.
We propose a fully decentralized privacy-preserving solution, which is able to securely compute the updates in each step.
Numerical validation shows that the proposed approach has superior performance compared to the existing approach in terms of both the accuracy and privacy level.
arXiv Detail & Related papers (2022-09-16T09:58:03Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging [20.39986955578245]
We introduce pairwise network differential privacy, a relaxation of Local Differential Privacy (LDP)
We derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging.
Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph.
arXiv Detail & Related papers (2022-06-10T13:32:35Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Privacy-preserving Decentralized Aggregation for Federated Learning [3.9323226496740733]
Federated learning is a promising framework for learning over decentralized data spanning multiple regions.
We develop a privacy-preserving decentralized aggregation protocol for federated learning.
We evaluate our algorithm on image classification and next-word prediction applications over benchmark datasets with 9 and 15 distributed sites.
arXiv Detail & Related papers (2020-12-13T23:45:42Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - Differentially private cross-silo federated learning [16.38610531397378]
Strict privacy is of paramount importance in distributed machine learning.
In this paper we combine additively homomorphic secure summation protocols with differential privacy in the so-called cross-silo federated learning setting.
We demonstrate that our proposed solutions give prediction accuracy that is comparable to the non-distributed setting.
arXiv Detail & Related papers (2020-07-10T18:15:10Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.