dnamite: A Python Package for Neural Additive Models
- URL: http://arxiv.org/abs/2503.07642v1
- Date: Thu, 06 Mar 2025 00:24:54 GMT
- Title: dnamite: A Python Package for Neural Additive Models
- Authors: Mike Van Ness, Madeleine Udell,
- Abstract summary: This paper introduces dnamite, a Python package that implements Neural Additive Models (NAMs)<n>We describe the methodology underlying dnamite, its design principles, and its implementation.<n>We demonstrate the utility of dnamite in a real-world setting where feature selection and survival analysis are both important.
- Score: 18.987678432106563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Additive models offer accurate and interpretable predictions for tabular data, a critical tool for statistical modeling. Recent advances in Neural Additive Models (NAMs) allow these models to handle complex machine learning tasks, including feature selection and survival analysis, on large-scale data. This paper introduces dnamite, a Python package that implements NAMs for these advanced applications. dnamite provides a scikit-learn style interface to train regression, classification, and survival analysis NAMs, with built-in support for feature selection. We describe the methodology underlying dnamite, its design principles, and its implementation. Through an application to the MIMIC III clinical dataset, we demonstrate the utility of dnamite in a real-world setting where feature selection and survival analysis are both important. The package is publicly available via pip and documented at dnamite.readthedocs.io.
Related papers
- A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
This paper demonstrates that model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering.<n>We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset.<n>After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces.
arXiv Detail & Related papers (2024-07-02T09:54:39Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparse is a novel machine learning model from the family of generalized additive models.
It promotes sparsity through a non-linear feature selection process during training.
This ensures interpretability through improved model sparsity without sacrificing predictive performance.
arXiv Detail & Related papers (2024-03-17T22:44:36Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data.
We show that even simple linear datamodels can successfully predict model outputs.
arXiv Detail & Related papers (2022-02-01T18:15:24Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
Model-Based Reinforcement Learning involves learning a textitdynamics model from data, and then using this model to optimise behaviour.
This paper sets out to disambiguate the role of different design choices for learning dynamics models, by comparing their performance to planning with a ground-truth model.
arXiv Detail & Related papers (2021-09-29T09:50:25Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - PyHealth: A Python Library for Health Predictive Models [53.848478115284195]
PyHealth is an open-source Python toolbox for developing various predictive models on healthcare data.
The data preprocessing module enables the transformation of complex healthcare datasets into machine learning friendly formats.
The predictive modeling module provides more than 30 machine learning models, including established ensemble trees and deep neural network-based approaches.
arXiv Detail & Related papers (2021-01-11T22:02:08Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
Preparation of training data is often a bottleneck in the lifecycle of deploying a deep learning model for production or research.
This paper proposes an end-to-end process of searching related models for serving based on the similarity of the target dataset and the training datasets of the available models.
arXiv Detail & Related papers (2020-10-13T22:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.