WECAR: An End-Edge Collaborative Inference and Training Framework for WiFi-Based Continuous Human Activity Recognition
- URL: http://arxiv.org/abs/2503.07669v1
- Date: Sun, 09 Mar 2025 03:40:27 GMT
- Title: WECAR: An End-Edge Collaborative Inference and Training Framework for WiFi-Based Continuous Human Activity Recognition
- Authors: Rong Li, Tao Deng, Siwei Feng, He Huang, Juncheng Jia, Di Yuan, Keqin Li,
- Abstract summary: We propose WECAR, an end-edge collaborative inference and training framework for WiFi-based continuous HAR.<n>We implement WECAR based on heterogeneous hardware using Jetson Nano as edge devices and the ESP32 as end devices.<n>Our experiments across three public WiFi datasets reveal that WECAR not only outperforms several state-of-the-art methods in performance and parameter efficiency, but also achieves a substantial reduction in the model's parameter count post-optimization.
- Score: 23.374051991346633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: WiFi-based human activity recognition (HAR) holds significant promise for ubiquitous sensing in smart environments. A critical challenge lies in enabling systems to dynamically adapt to evolving scenarios, learning new activities without catastrophic forgetting of prior knowledge, while adhering to the stringent computational constraints of edge devices. Current approaches struggle to reconcile these requirements due to prohibitive storage demands for retaining historical data and inefficient parameter utilization. We propose WECAR, an end-edge collaborative inference and training framework for WiFi-based continuous HAR, which decouples computational workloads to overcome these limitations. In this framework, edge devices handle model training, lightweight optimization, and updates, while end devices perform efficient inference. WECAR introduces two key innovations, i.e., dynamic continual learning with parameter efficiency and hierarchical distillation for end deployment. For the former, we propose a transformer-based architecture enhanced by task-specific dynamic model expansion and stability-aware selective retraining. For the latter, we propose a dual-phase distillation mechanism that includes multi-head self-attention relation distillation and prefix relation distillation. We implement WECAR based on heterogeneous hardware using Jetson Nano as edge devices and the ESP32 as end devices, respectively. Our experiments across three public WiFi datasets reveal that WECAR not only outperforms several state-of-the-art methods in performance and parameter efficiency, but also achieves a substantial reduction in the model's parameter count post-optimization without sacrificing accuracy. This validates its practicality for resource-constrained environments.
Related papers
- Structure-Activation Synergy: A Dual Efficiency Framework for Parameter-Memory Optimized Transfer Learning [8.602744958104969]
We present Structure-Activation Synergy (S2A), an innovative framework achieving dual optimization of parameters and memory.
We show S2A's superior efficiency, reducing GPU memory consumption by 75% (4.2 average reduction) while maintaining 98.7% of full fine-tuning accuracy with only 0.9% tunable parameters.
arXiv Detail & Related papers (2025-03-11T08:10:03Z) - DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.<n>It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.<n>It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - ConSense: Continually Sensing Human Activity with WiFi via Growing and Picking [19.09127252818096]
WiFi-based human activity recognition (HAR) holds significant application potential across various fields.<n>To handle dynamic environments where new activities are continuously introduced, WiFi-based HAR systems must adapt by learning new concepts without forgetting previously learned ones.<n>We propose ConSense, a lightweight and fast-adapted exemplar-free class incremental learning framework for WiFi-based HAR.
arXiv Detail & Related papers (2025-02-18T11:20:33Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning [23.92661395403251]
Recent rehearsal-free methods, guided by prompts, excel in vision-related continual learning (CL) with drifting data but lack resource efficiency.<n>We introduce Resource-Efficient Prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free methods.<n>Our approach employs swift prompt selection to refine input data using a carefully provisioned model.
arXiv Detail & Related papers (2024-06-07T09:17:33Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
Point cloud analysis has achieved outstanding performance by transferring point cloud pre-trained models.
Existing methods for model adaptation usually update all model parameters, which is inefficient as it relies on high computational costs.
In this paper, we aim to study parameter-efficient transfer learning for point cloud analysis with an ideal trade-off between task performance and parameter efficiency.
arXiv Detail & Related papers (2024-03-03T08:25:04Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between
Convergence and Power Transfer [42.30741737568212]
We propose the solution of powering devices using wireless power transfer (WPT)
This work aims at the derivation of guidelines on deploying the resultant wirelessly powered FEEL (WP-FEEL) system.
The results provide useful guidelines on WPT provisioning to provide a guaranteer on learning performance.
arXiv Detail & Related papers (2021-02-24T15:47:34Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.