Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization
- URL: http://arxiv.org/abs/2305.13503v3
- Date: Thu, 15 Feb 2024 23:04:03 GMT
- Title: Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization
- Authors: Zhan-Lun Chang, Seyyedali Hosseinalipour, Mung Chiang, Christopher G.
Brinton
- Abstract summary: Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
- Score: 20.741776617129208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has emerged as a key technique for distributed
machine learning (ML). Most literature on FL has focused on ML model training
for (i) a single task/model, with (ii) a synchronous scheme for updating model
parameters, and (iii) a static data distribution setting across devices, which
is often not realistic in practical wireless environments. To address this, we
develop DMA-FL considering dynamic FL with multiple downstream tasks/models
over an asynchronous model update architecture. We first characterize
convergence via introducing scheduling tensors and rectangular functions to
capture the impact of system parameters on learning performance. Our analysis
sheds light on the joint impact of device training variables (e.g., number of
local gradient descent steps), asynchronous scheduling decisions (i.e., when a
device trains a task), and dynamic data drifts on the performance of ML
training for different tasks. Leveraging these results, we formulate an
optimization for jointly configuring resource allocation and device scheduling
to strike an efficient trade-off between energy consumption and ML performance.
Our solver for the resulting non-convex mixed integer program employs
constraint relaxations and successive convex approximations with convergence
guarantees. Through numerical experiments, we reveal that DMA-FL substantially
improves the performance-efficiency tradeoff.
Related papers
- Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning [5.421492821020181]
Federated Learning (FL) is a distributed machine learning approach that enables devices to collaboratively train models without sharing their local data.
Applying FL to real-world data presents challenges, particularly as most existing FL research focuses on unimodal data.
We propose FlexMod, a novel approach to enhance computational efficiency in MFL by adaptively allocating training resources for each modality encoder.
arXiv Detail & Related papers (2024-08-13T01:14:27Z) - DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning (FL) is a distributed learning paradigm that can coordinate heterogeneous edge devices to perform model training without sharing private data.
This paper introduces novel analytical models and optimization algorithms that leverage the interplay between batch size and aggregation frequency to navigate the trade-offs among convergence, cost, and completion time for dynamic FL training.
arXiv Detail & Related papers (2023-10-20T08:36:12Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL) is a newly emerged decentralized machine learning (ML) framework.
We propose an asynchronous FL framework with periodic aggregation to eliminate the straggler issue in FL systems.
arXiv Detail & Related papers (2021-07-23T18:57:08Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.