論文の概要: A Time Series Multitask Framework Integrating a Large Language Model, Pre-Trained Time Series Model, and Knowledge Graph
- arxiv url: http://arxiv.org/abs/2503.07682v1
- Date: Mon, 10 Mar 2025 11:25:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:25.024405
- Title: A Time Series Multitask Framework Integrating a Large Language Model, Pre-Trained Time Series Model, and Knowledge Graph
- Title(参考訳): 大規模言語モデル,事前学習時系列モデル,知識グラフを統合する時系列マルチタスクフレームワーク
- Authors: Shule Hao, Junpeng Bao, Chuncheng Lu,
- Abstract要約: 時系列分析は金融、交通、産業などの分野において重要である。
本稿では,時間的特徴をテキスト記述と統合した新しい時系列マルチタスクフレームワーク LTM を提案する。
ベンチマークデータセットの実験では、LTMが既存のメソッドよりも大幅に優れていることが示されている。
- 参考スコア(独自算出の注目度): 1.3654846342364308
- License:
- Abstract: Time series analysis is crucial in fields like finance, transportation, and industry. However, traditional models often focus solely on temporal features, limiting their ability to capture underlying information. This paper proposes a novel time series multitask framework, called LTM, which integrates temporal features with textual descriptions to enhance analytical and predictive capabilities. LTM combines pre-trained time series model, large language model (LLM), and knowledge graph to tackle time series tasks, including forecasting, imputation, and anomaly detection. LTM achieves improved performance with a few trainable parameters. It is very efficient and practical. LTM encodes time series data into patches and enriches user-provided prompts using knowledge graphs to generate enhanced prompts. A novel feature fusion method embeds prompts into each patch encoding, which is processed by a frozen LLM, followed by a feature enhancement module and a time decoder module. During fine-tuning stage, cosine similarity between prompts and temporal patches is integrated into the loss function to boost performance. Experiments on benchmark datasets show that LTM significantly outperforms existing methods. It provides a robust and versatile solution for time series tasks.
- Abstract(参考訳): 時系列分析は金融、交通、産業などの分野において重要である。
しかし、伝統的なモデルは、しばしば時間的特徴のみに焦点を当て、基盤となる情報をキャプチャする能力を制限する。
本稿では,時間的特徴をテキスト記述と統合し,解析的・予測的能力を向上させる,新たな時系列マルチタスクフレームワーク LTM を提案する。
LTMは、事前訓練された時系列モデル、大規模言語モデル(LLM)と知識グラフを組み合わせて、予測、計算、異常検出を含む時系列タスクに取り組む。
LTMは、いくつかのトレーニング可能なパラメータで改善されたパフォーマンスを実現する。
それは非常に効率的で実用的です。
LTMは時系列データをパッチにエンコードし、知識グラフを使用してユーザが提供するプロンプトを強化し、強化されたプロンプトを生成する。
新たな特徴融合法が各パッチエンコーディングにプロンプトを埋め込み、凍結LDMで処理され、続いて機能拡張モジュールと時間デコーダモジュールが続く。
微調整の段階では、プロンプトと時間パッチのコサイン類似性がロス関数に統合され、性能が向上する。
ベンチマークデータセットの実験では、LTMが既存のメソッドよりも大幅に優れていることが示されている。
時系列タスクに対して堅牢で汎用的なソリューションを提供する。
関連論文リスト
- Adapting Large Language Models for Time Series Modeling via a Novel Parameter-efficient Adaptation Method [9.412920379798928]
時系列モデリングは多くの実世界のアプリケーションにおいて重要な意味を持つ。
我々は時系列と自然言語のモダリティを調整するためのTime-LlaMAフレームワークを提案する。
本稿では,提案手法がSOTA(State-of-the-art)性能を実現することを示す。
論文 参考訳(メタデータ) (2025-02-19T13:52:26Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning [10.854285913078257]
本稿では,時系列解析用に設計された新しいMLLMであるChatTSを紹介する。
ChatTSは、視覚MLLMが画像を処理する方法と同様、時系列をモダリティとして扱う。
Time Series Evol-Instructは様々な時系列Q&Aを生成し、モデルの推論能力を高めます。
論文 参考訳(メタデータ) (2024-12-04T08:06:15Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - TimeCMA: Towards LLM-Empowered Multivariate Time Series Forecasting via Cross-Modality Alignment [21.690191536424567]
TimeCMAは、時系列予測のための直感的で効果的なフレームワークである。
8つの実際のデータセットに対する大規模な実験は、TimeCMAが最先端のデータセットを上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-03T00:27:29Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
時系列を数値桁の列として符号化することにより、テキストの次トーケン予測として時系列予測をフレーム化することができる。
GPT-3 や LLaMA-2 のような大規模言語モデル (LLM) は、ダウンストリームタスクでトレーニングされた目的構築された時系列モデルの性能に匹敵する、あるいはそれ以上のレベルにおいて、驚くほどゼロショット・エクスポレート・時系列を生成できる。
論文 参考訳(メタデータ) (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。