論文の概要: Adaptive routing protocols for determining optimal paths in AI multi-agent systems: a priority- and learning-enhanced approach
- arxiv url: http://arxiv.org/abs/2503.07686v1
- Date: Mon, 10 Mar 2025 13:16:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 22:35:51.366331
- Title: Adaptive routing protocols for determining optimal paths in AI multi-agent systems: a priority- and learning-enhanced approach
- Title(参考訳): AIマルチエージェントシステムにおける最適経路決定のための適応的ルーティングプロトコル:優先的および学習的アプローチ
- Authors: Theodor Panayotov, Ivo Emanuilov,
- Abstract要約: 本稿では,AIマルチエージェントネットワークに適した拡張適応ルーティングを提案する。
タスク複雑性,ユーザ要求優先度,エージェント能力,帯域幅,レイテンシ,負荷,モデル高度化,信頼性などの多面的パラメータを組み込んだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As distributed artificial intelligence (AI) and multi-agent architectures grow increasingly complex, the need for adaptive, context-aware routing becomes paramount. This paper introduces an enhanced, adaptive routing algorithm tailored for AI multi-agent networks, integrating priority-based cost functions and dynamic learning mechanisms. Building on an extended Dijkstra-based framework, we incorporate multi-faceted parameters such as task complexity, user request priority, agent capabilities, bandwidth, latency, load, model sophistication, and reliability. We further propose dynamically adaptive weighting factors, tuned via reinforcement learning (RL), to continuously evolve routing policies based on observed network performance. Additionally, heuristic filtering and hierarchical routing structures improve scalability and responsiveness. Our approach yields context-sensitive, load-aware, and priority-focused routing decisions that not only reduce latency for critical tasks but also optimize overall resource utilization, ultimately enhancing the robustness, flexibility, and efficiency of multi-agent systems.
- Abstract(参考訳): 分散人工知能(AI)とマルチエージェントアーキテクチャが複雑化するにつれ、適応型コンテキスト対応ルーティングの必要性が最重要となる。
本稿では,AIマルチエージェントネットワークに適した適応型ルーティングアルゴリズムを導入し,優先度に基づくコスト関数と動的学習機構を統合する。
拡張されたDijkstraベースのフレームワーク上に構築され、タスクの複雑さ、ユーザの要求優先度、エージェント機能、帯域幅、レイテンシ、負荷、モデルの洗練、信頼性といった、多面的なパラメータを組み込んでいます。
さらに、ネットワーク性能に基づくルーティングポリシーを継続的に進化させるために、強化学習(RL)により調整された動的適応重み付け因子を提案する。
さらに、ヒューリスティックなフィルタリングと階層的なルーティング構造により、スケーラビリティと応答性が向上する。
提案手法は,重要なタスクの待ち時間を短縮するだけでなく,リソース利用全体の最適化を図り,最終的にはマルチエージェントシステムの堅牢性,柔軟性,効率性を向上する。
関連論文リスト
- UserCentrix: An Agentic Memory-augmented AI Framework for Smart Spaces [8.111700384985356]
エージェントAIは、自律的で積極的な意思決定とともに、スマート環境を変革した。
本稿では、動的でコンテキスト対応な意思決定を通じてスマートスペースを強化するために設計された、エージェント型メモリ拡張AIフレームワークであるUserCentrixを紹介する。
論文 参考訳(メタデータ) (2025-05-01T11:54:49Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
車両ルーティング問題(VRP)は、トラベリングセールスパーソン問題の延長であり、進化的最適化における基本的なNPハードチャレンジである。
遺伝的アルゴリズムによってさらに最適化された初期解を迅速に生成するために、強化学習エージェント(事前インスタンスで訓練された)を使用した新しい最適化フレームワークを導入する。
例えば、EARLIは1秒以内に500カ所の車両ルーティングを処理し、同じソリューション品質の現在のソルバよりも10倍高速で、リアルタイムやインタラクティブなルーティングのようなアプリケーションを可能にする。
論文 参考訳(メタデータ) (2025-04-08T15:21:01Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
次世代ネットワークは、トラフィックダイナミクスに基づいたネットワーク構成を自動化し、適応的に調整する必要がある。
交通政策を決定する伝統的な手法は、通常は手作りのプログラミング最適化とアルゴリズムに基づいている。
我々は適応的なトラフィックルーティングのための深層強化学習(DRL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-02-07T01:48:29Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
インテリジェント反射面(IRS)支援無人航空機(UAV)通信は、地上基地局の負荷を低コストで軽減することが期待されている。
既存の研究は主に、複数のIRSではなく単一のIRSの配置とリソース割り当てに焦点を当てている。
我々は,共同IRSユーザアソシエーションのための新しい最適化アルゴリズム,UAVの軌道最適化,逐次干渉キャンセル(SIC)復号命令スケジューリング,電力割り当てを提案する。
論文 参考訳(メタデータ) (2023-12-08T01:57:10Z) - Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs [1.1861167902268832]
多エージェント深部強化学習(MADRL)は、電力制御のような幅広い複雑な最適化問題に対処するための有望な手法として登場した。
本稿では,これらの課題を緩和する有効な手段として,分散エージェント間の通信誘導構造としてグラフを用いることを提案する。
論文 参考訳(メタデータ) (2023-11-27T14:25:40Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Design Principles for Model Generalization and Scalable AI Integration
in Radio Access Networks [2.846642778157227]
本稿では、性能向上と無線通信におけるスケーラブルなAI統合の実現において、モデル一般化を実現する上での重要な役割を強調する。
我々は,3つの主要な領域において,モデル一般化のための設計原則を概説する。堅牢性のための環境,システム目的への適応性のための意図,AI駆動制御ループの削減のための制御タスクである。
本稿では、分散データ生成と組み合わせて、トレーニングとデータ管理機能の集中化を活用する学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-09T20:46:31Z) - Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer
Optimization Framework [47.57576667752444]
オープンRAN(O-RAN)におけるインテリジェントステアリングアプリケーションを実現するために,フロースプリット分布,渋滞制御,スケジューリング(JFCS)を共同で最適化する。
i) 適切な無線ユニットへのトラフィックを効率よく、適応的に誘導する新しいJFCSフレームワークを提案し、i) 強化学習、内近似、二項探索に基づく低複雑さアルゴリズムを開発し、異なる時間スケールでJFCS問題を効果的に解決し、iv) 厳密な理論的性能結果を分析し、遅延とユーティリティ最適化のトレードオフを改善するためのスケーリング係数が存在することを示す。
論文 参考訳(メタデータ) (2023-02-06T11:37:06Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
本稿では,次世代無線ネットワーク(HetNets)における共同最適無線アクセス技術(RATs)の割り当てと電力割り当てによるコストアウェアダウンリンク総和率の問題について考察する。
本稿では,DeepRAT(DeepRAT)と呼ばれる階層型多エージェント深層強化学習(DRL)フレームワークを提案する。
特に、DeepRATフレームワークは、問題を2つの主要なステージに分解する: 単一エージェントのDeep Q Networkアルゴリズムを実装するRATs-EDs割り当てステージと、マルチエージェントのDeep Deterministic Policy Gradientを利用するパワー割り当てステージである。
論文 参考訳(メタデータ) (2022-02-28T09:49:44Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。