CIMAGE: Exploiting the Conditional Independence in Masked Graph Auto-encoders
- URL: http://arxiv.org/abs/2503.07852v1
- Date: Mon, 10 Mar 2025 20:59:27 GMT
- Title: CIMAGE: Exploiting the Conditional Independence in Masked Graph Auto-encoders
- Authors: Jongwon Park, Heesoo Jung, Hogun Park,
- Abstract summary: Conditional Independence (CI) inherently satisfies the minimum redundancy and maximum relevance criteria, but its application typically requires access to downstream labels.<n>We introduce CIMAGE, a novel approach that leverages Conditional Independence to guide an effective masking strategy within the latent space.<n>Our theoretical analysis further supports the superiority of CIMAGE's novel CI-aware masking method by demonstrating that the learned embedding exhibits approximate linear separability.
- Score: 3.700463358780727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Self-Supervised Learning (SSL) methods encapsulating relational information via masking in Graph Neural Networks (GNNs) have shown promising performance. However, most existing approaches rely on random masking strategies in either feature or graph space, which may fail to capture task-relevant information fully. We posit that this limitation stems from an inability to achieve minimum redundancy between masked and unmasked components while ensuring maximum relevance of both to potential downstream tasks. Conditional Independence (CI) inherently satisfies the minimum redundancy and maximum relevance criteria, but its application typically requires access to downstream labels. To address this challenge, we introduce CIMAGE, a novel approach that leverages Conditional Independence to guide an effective masking strategy within the latent space. CIMAGE utilizes CI-aware latent factor decomposition to generate two distinct contexts, leveraging high-confidence pseudo-labels derived from unsupervised graph clustering. In this framework, the pretext task involves reconstructing the masked second context solely from the information provided by the first context. Our theoretical analysis further supports the superiority of CIMAGE's novel CI-aware masking method by demonstrating that the learned embedding exhibits approximate linear separability, which enables accurate predictions for the downstream task. Comprehensive evaluations across diverse graph benchmarks illustrate the advantage of CIMAGE, with notably higher average rankings on node classification and link prediction tasks. Notably, our proposed model highlights the under-explored potential of CI in enhancing graph SSL methodologies and offers enriched insights for effective graph representation learning.
Related papers
- "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.
Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning [0.0]
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction.<n>Current self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse.<n>We propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information.
arXiv Detail & Related papers (2025-02-02T07:42:45Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - Boosting Graph Neural Network Expressivity with Learnable Lanczos Constraints [7.605749412696919]
Graph Neural Networks (GNNs) excel in handling graph-structured data but often underperform in link prediction tasks.<n>We present a novel method to enhance the expressivity of GNNs by embedding induced subgraphs into the graph Laplacian matrix's eigenbasis.<n>We demonstrate the ability to distinguish graphs that are indistinguishable by 2-WL, while maintaining efficient time complexity.
arXiv Detail & Related papers (2024-08-22T12:22:00Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - Rethinking Graph Masked Autoencoders through Alignment and Uniformity [26.86368034133612]
Self-supervised learning on graphs can be bifurcated into contrastive and generative methods.
Recent advent of graph masked autoencoder (GraphMAE) rekindles momentum behind generative methods.
arXiv Detail & Related papers (2024-02-11T15:21:08Z) - Generative and Contrastive Paradigms Are Complementary for Graph
Self-Supervised Learning [56.45977379288308]
Masked autoencoder (MAE) learns to reconstruct masked graph edges or node features.
Contrastive Learning (CL) maximizes the similarity between augmented views of the same graph.
We propose graph contrastive masked autoencoder (GCMAE) framework to unify MAE and CL.
arXiv Detail & Related papers (2023-10-24T05:06:06Z) - RARE: Robust Masked Graph Autoencoder [45.485891794905946]
Masked graph autoencoder (MGAE) has emerged as a promising self-supervised graph pre-training (SGP) paradigm.
We propose a novel SGP method termed Robust mAsked gRaph autoEncoder (RARE) to improve the certainty in inferring masked data.
arXiv Detail & Related papers (2023-04-04T03:35:29Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
We propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN)<n>In our method, we improve the discriminative capability of the latent embeddings by an unperturbed augmentation strategy and a correlation reduction mechanism.<n>By combining the two settings, we extract rich supervision information from both the abundant nodes and the rare yet valuable labeled nodes for discriminative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.