Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
- URL: http://arxiv.org/abs/2502.01684v1
- Date: Sun, 02 Feb 2025 07:42:45 GMT
- Title: Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
- Authors: Srinitish Srinivasan, Omkumar CU,
- Abstract summary: Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction.
Current self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse.
We propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information.
- Score: 0.0
- License:
- Abstract: Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction, yet prevailing self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse. Existing approaches often depend on feature reconstruction, negative sampling, or complex decoders, which introduce training overhead and hinder generalization. Further, current techniques which address such limitations fail to account for the contribution of node embeddings to a certain prediction in the absence of labeled nodes. To address these limitations, we propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information. Additionally, we introduce a semantic-aware objective term that incorporates pseudo-labels derived from Gaussian Mixture Models (GMMs), enhancing node discriminability by evaluating latent feature contributions. Extensive experiments demonstrate that our framework outperforms state-of-the-art graph SSL methods across benchmarks, achieving superior performance without contrastive loss or complex decoders. Key innovations include (1) a non-contrastive, view-invariant joint embedding predictive architecture, (2) Leveraging single context and multiple targets relationship between subgraphs, and (3) GMM-based pseudo-label scoring to capture semantic contributions. This work advances graph SSL by offering a computationally efficient, collapse-resistant paradigm that bridges spatial and semantic graph features for downstream tasks. The code for our paper can be found at https://github.com/Deceptrax123/JPEB-GSSL
Related papers
- Improving Node Representation by Boosting Target-Aware Contrastive Loss [10.73390567832967]
We introduce Target-Aware Contrastive Learning (Target-aware CL) to enhance target task performance.
By minimizing XTCL, Target-aware CL increases the mutual information between the target task and node representations.
We show experimentally that XTCL significantly improves the performance on two target tasks.
arXiv Detail & Related papers (2024-10-04T20:08:24Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active
Learning [38.5372139056485]
Graph Active Learning (GAL) aims to find the most informative nodes in graphs for annotation to maximize the Graph Neural Networks (GNNs) performance.
Gal strategies may introduce semantic confusion to the selected training set, particularly when graphs are noisy.
We present Semantic-aware Active learning framework for Graphs (SAG) to mitigate the semantic confusion problem.
arXiv Detail & Related papers (2023-08-17T07:06:54Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Self-Supervised Node Representation Learning via Node-to-Neighbourhood
Alignment [10.879056662671802]
Self-supervised node representation learning aims to learn node representations from unlabelled graphs that rival the supervised counterparts.
In this work, we present simple-yet-effective self-supervised node representation learning via aligning the hidden representations of nodes and their neighbourhood.
We learn node representations that achieve promising node classification performance on a set of graph-structured datasets from small- to large-scale.
arXiv Detail & Related papers (2023-02-09T13:21:18Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
A fundamental challenge of bipartite graph representation learning is how to extract node embeddings.
Most recent bipartite graph SSL methods are based on contrastive learning which learns embeddings by discriminating positive and negative node pairs.
We introduce a novel synergistic representation learning model (STERLING) to learn node embeddings without negative node pairs.
arXiv Detail & Related papers (2023-01-25T03:21:42Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.