論文の概要: ReLATE: Resilient Learner Selection for Multivariate Time-Series Classification Against Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2503.07882v1
- Date: Mon, 10 Mar 2025 21:55:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:17.402020
- Title: ReLATE: Resilient Learner Selection for Multivariate Time-Series Classification Against Adversarial Attacks
- Title(参考訳): ReLATE: 敵対的攻撃に対する多変量時系列分類のためのレジリエント学習者選択
- Authors: Cagla Ipek Kocal, Onat Gungor, Aaron Tartz, Tajana Rosing, Baris Aksanli,
- Abstract要約: 本稿では,データセットの類似性に基づいた頑健な学習者を特定するフレームワークReLATEを紹介する。
ReLATEは、よく知られた敵攻撃シナリオにおいて、複数のディープラーニングモデルを維持している。
計算オーバーヘッドを平均81.2%削減し、対向レジリエンスを高め、堅牢なモデル選択を合理化している。
- 参考スコア(独自算出の注目度): 6.20056740621519
- License:
- Abstract: Minimizing computational overhead in time-series classification, particularly in deep learning models, presents a significant challenge. This challenge is further compounded by adversarial attacks, emphasizing the need for resilient methods that ensure robust performance and efficient model selection. We introduce ReLATE, a framework that identifies robust learners based on dataset similarity, reduces computational overhead, and enhances resilience. ReLATE maintains multiple deep learning models in well-known adversarial attack scenarios, capturing model performance. ReLATE identifies the most analogous dataset to a given target using a similarity metric, then applies the optimal model from the most similar dataset. ReLATE reduces computational overhead by an average of 81.2%, enhancing adversarial resilience and streamlining robust model selection, all without sacrificing performance, within 4.2% of Oracle.
- Abstract(参考訳): 時系列分類における計算オーバーヘッドを最小限に抑えることは、特にディープラーニングモデルにおいて重要な課題である。
この課題は、堅牢なパフォーマンスと効率的なモデル選択を保証するレジリエントな方法の必要性を強調した敵攻撃によってさらに複雑化されている。
本稿では,データセットの類似性に基づいて頑健な学習者を識別し,計算オーバーヘッドを低減し,レジリエンスを高めるフレームワークReLATEを紹介する。
ReLATEは、よく知られた敵攻撃シナリオで複数のディープラーニングモデルをメンテナンスし、モデルパフォーマンスをキャプチャする。
ReLATEは、類似度メトリックを使用して、与えられたターゲットに対して最も類似したデータセットを特定し、最も類似したデータセットから最適なモデルを適用する。
ReLATEは計算オーバーヘッドを平均81.2%削減し、敵のレジリエンスを高め、堅牢なモデル選択を合理化する。
関連論文リスト
- Improving the Efficiency of Self-Supervised Adversarial Training through Latent Clustering-Based Selection [2.7554677967598047]
逆向きの堅牢な学習は、トレーニングの例をはるかに多く求めていると広く認識されている。
近年の研究では、モデルロバスト性を高めるために、外部または合成された未ラベルデータを用いた自己教師付き対人訓練が提案されている。
そこで本稿では,SSATに不可欠なラベルなしデータの小さなサブセットを戦略的に選択し,ロバスト性を向上させる手法を提案する。
論文 参考訳(メタデータ) (2025-01-15T15:47:49Z) - Exploring Query Efficient Data Generation towards Data-free Model Stealing in Hard Label Setting [38.755154033324374]
データフリーモデルは、ターゲットモデルの構造、パラメータ、トレーニングデータにアクセスすることなく、ターゲットモデルの機能を代替モデルに複製する。
本稿では Query Efficient Data Generation (textbfQEDG) と呼ばれる新しいデータフリーモデルステーリング手法を提案する。
対象モデルの決定境界に密接に一様に整合する十分なサンプルの生成を保証するために、2つの異なる損失関数を導入する。
論文 参考訳(メタデータ) (2024-12-18T03:03:15Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
連続的な学習設定の主な課題は、以前に学習したタスクを実行する方法を忘れずに、タスクのシーケンスを効率的に学習することである。
本研究では,モデルの予測力に悪影響を及ぼすことなく,冗長なパラメータを自動生成する,スパースモデル(EsaCL)の効率的な連続学習法を提案する。
論文 参考訳(メタデータ) (2024-01-11T04:59:44Z) - SCME: A Self-Contrastive Method for Data-free and Query-Limited Model
Extraction Attack [18.998300969035885]
モデル抽出は、代替モデル上で逆例を生成することによって、ターゲットモデルを騙す。
本稿では,偽データの合成におけるクラス間およびクラス内多様性を考慮した,SCME という新しいデータフリーモデル抽出手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T10:41:45Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Robustness-preserving Lifelong Learning via Dataset Condensation [11.83450966328136]
「破滅的忘れ」とは、新しいデータよりもモデルの精度が向上し、以前のデータよりも精度が保たれるという悪名高いジレンマを指す。
本稿では,現在のデータの「コアセット」を決定するために,現代の二段階最適化手法を活用する新しいメモリ再生LL戦略を提案する。
結果の LL フレームワークを 'Data-Efficient Robustness-Preserving LL' (DERPLL) と呼ぶ。
実験の結果, DERPLLは従来のコアセット誘導LLベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-03-07T19:09:03Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。