LLM-Powered Knowledge Graphs for Enterprise Intelligence and Analytics
- URL: http://arxiv.org/abs/2503.07993v1
- Date: Tue, 11 Mar 2025 02:50:45 GMT
- Title: LLM-Powered Knowledge Graphs for Enterprise Intelligence and Analytics
- Authors: Rajeev Kumar, Kumar Ishan, Harishankar Kumar, Abhinandan Singla,
- Abstract summary: This paper introduces a framework that uses large language models (LLMs) to unify various data sources into a comprehensive, activity-centric knowledge graph.<n>The framework automates tasks such as entity extraction, relationship inference, and semantic enrichment.<n>It supports applications such as contextual search, task prioritization, expertise discovery, personalized recommendations, and advanced analytics.
- Score: 4.968761545765129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disconnected data silos within enterprises obstruct the extraction of actionable insights, diminishing efficiency in areas such as product development, client engagement, meeting preparation, and analytics-driven decision-making. This paper introduces a framework that uses large language models (LLMs) to unify various data sources into a comprehensive, activity-centric knowledge graph. The framework automates tasks such as entity extraction, relationship inference, and semantic enrichment, enabling advanced querying, reasoning, and analytics across data types like emails, calendars, chats, documents, and logs. Designed for enterprise flexibility, it supports applications such as contextual search, task prioritization, expertise discovery, personalized recommendations, and advanced analytics to identify trends and actionable insights. Experimental results demonstrate its success in the discovery of expertise, task management, and data-driven decision making. By integrating LLMs with knowledge graphs, this solution bridges disconnected systems and delivers intelligent analytics-powered enterprise tools.
Related papers
- A Review on Large Language Models for Visual Analytics [0.2209921757303168]
The paper outlines the theoretical underpinnings of visual analytics and the transformative potential of Large Language Models (LLMs)
The review further investigates how the synergy between LLMs and visual analytics enhances data interpretation, visualization techniques, and interactive exploration capabilities.
The paper discusses their functionalities, strengths, and limitations in supporting data exploration, visualization enhancement, automated reporting, and insight extraction.
arXiv Detail & Related papers (2025-03-19T13:02:01Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Deep Learning, Machine Learning, Advancing Big Data Analytics and Management [26.911181864764117]
Advances in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management.<n>This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies.<n>It equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics.
arXiv Detail & Related papers (2024-12-03T05:59:34Z) - Capturing and Anticipating User Intents in Data Analytics via Knowledge Graphs [0.061446808540639365]
This work explores the usage of Knowledge Graphs (KG) as a basic framework for capturing a human-centered manner complex analytics.
The data stored in the generated KG can then be exploited to provide assistance (e.g., recommendations) to the users interacting with these systems.
arXiv Detail & Related papers (2024-11-01T20:45:23Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks have garnered significant interest within database and AI communities.
silos of multimodal data sources make it difficult to identify appropriate data sources for accomplishing the task at hand.
We propose CMDBench, a benchmark modeling the complexity of enterprise data platforms.
arXiv Detail & Related papers (2024-06-02T01:10:41Z) - Collaborative business intelligence virtual assistant [1.9953434933575993]
This study focuses on the applications of data mining within distributed virtual teams through the interaction of users and a CBI Virtual Assistant.
The proposed virtual assistant for CBI endeavors to enhance data exploration accessibility for a wider range of users and streamline the time and effort required for data analysis.
arXiv Detail & Related papers (2023-12-20T05:34:12Z) - AVIS: Autonomous Visual Information Seeking with Large Language Model
Agent [123.75169211547149]
We propose an autonomous information seeking visual question answering framework, AVIS.
Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools.
AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
arXiv Detail & Related papers (2023-06-13T20:50:22Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - SemTUI: a Framework for the Interactive Semantic Enrichment of Tabular
Data [0.0]
SemTUI is a framework to make the enrichment process flexible, complete, and effective through the use of semantics.
A task-driven user evaluation proved SemTUI to be understandable, usable, and capable of achieving table enrichment with little effort and time.
arXiv Detail & Related papers (2022-03-17T17:14:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.