論文の概要: MuCoS: Efficient Drug Target Discovery via Multi Context Aware Sampling in Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2503.08075v1
- Date: Tue, 11 Mar 2025 06:08:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:25.598085
- Title: MuCoS: Efficient Drug Target Discovery via Multi Context Aware Sampling in Knowledge Graphs
- Title(参考訳): MuCoS:知識グラフにおけるマルチコンテキスト認識による効果的な薬物ターゲット発見
- Authors: Haji Gul, Abdul Ghani Naim, Ajaz Ahmad Bhat,
- Abstract要約: Multi Context Aware Sampling (MuCoS) は、高密度の隣人を対象にした新しいフレームワークである。
KEGG50kデータセットの実験では、MuCoSは最先端のベースラインを上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate prediction of drug target interactions is critical for accelerating drug discovery and elucidating complex biological mechanisms. In this work, we frame drug target prediction as a link prediction task on heterogeneous biomedical knowledge graphs (KG) that integrate drugs, proteins, diseases, pathways, and other relevant entities. Conventional KG embedding methods such as TransE and ComplEx SE are hindered by their reliance on computationally intensive negative sampling and their limited generalization to unseen drug target pairs. To address these challenges, we propose Multi Context Aware Sampling (MuCoS), a novel framework that prioritizes high-density neighbours to capture salient structural patterns and integrates these with contextual embeddings derived from BERT. By unifying structural and textual modalities and selectively sampling highly informative patterns, MuCoS circumvents the need for negative sampling, significantly reducing computational overhead while enhancing predictive accuracy for novel drug target associations and drug targets. Extensive experiments on the KEGG50k dataset demonstrate that MuCoS outperforms state-of-the-art baselines, achieving up to a 13\% improvement in mean reciprocal rank (MRR) in predicting any relation in the dataset and a 6\% improvement in dedicated drug target relation prediction.
- Abstract(参考訳): 薬物標的相互作用の正確な予測は、薬物発見の加速と複雑な生物学的機構の解明に重要である。
本研究では, 薬物, タンパク質, 疾患, 経路, その他の関連物質を統合した, 異種生物医学知識グラフ(KG)のリンク予測タスクとして, 薬物標的予測を行う。
TransEやComplEx SEのような従来のKG埋め込み手法は、計算集約的な負のサンプリングと、目に見えない薬物標的対への限定的な一般化に依存しているため妨げられている。
これらの課題に対処するために,高密度隣人に対して高密度構造パターンを優先し,BERTから派生したコンテキスト埋め込みと統合する新しいフレームワークであるMulti Context Aware Sampling (MuCoS)を提案する。
構造的およびテキスト的モダリティを統一し、高い情報的パターンを選択的にサンプリングすることにより、MCoSはネガティブサンプリングの必要性を回避し、新規な薬物標的関連や薬物標的の予測精度を高めながら、計算オーバーヘッドを著しく低減する。
KEGG50kデータセットの大規模な実験により、MuCoSは最先端のベースラインより優れており、データセット内の任意の関係を予測する上で、平均相互ランク(MRR)が最大13倍改善され、専用の薬物標的関係予測が6倍改善されている。
関連論文リスト
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
薬物や標的の構造情報と化学摂動情報を統合するGramSeq-DTAを提案する。
我々の手法は、広く使われているDTAデータセットで検証された場合、現在の最先端のDTA予測モデルよりも優れている。
論文 参考訳(メタデータ) (2024-11-03T03:17:09Z) - SMILES-Mamba: Chemical Mamba Foundation Models for Drug ADMET Prediction [16.189335444981353]
小分子の薬物の吸収、分布、代謝、排出、毒性を予測することは安全性と有効性を確保するために重要である。
本稿では,ラベル付きデータとラベル付きデータの両方を活用する2段階モデルを提案する。
その結果,SMILES-Mambaは22のADMETデータセットの競合性能を示し,14のタスクで最高スコアを達成した。
論文 参考訳(メタデータ) (2024-08-11T04:53:12Z) - MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
グラフアテンションネットワークの様々な層埋め込みからカーネル情報を抽出することにより、MKDTIと呼ばれるモデルを定式化する。
我々は、Dual Laplacian Regularized Least Squaresフレームワークを使用して、新規なドラッグターゲットエンティティ接続を予測する。
論文 参考訳(メタデータ) (2024-07-14T02:53:25Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
本稿では,テキスト内薬物相乗学習のための新しい設定とモデルを提案する。
特定のがん細胞標的の文脈における10~20の薬物相乗関係の「個人化データセット」を作成した。
私たちの目標は、その文脈で追加の薬物シナジー関係を予測することです。
論文 参考訳(メタデータ) (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
我々は、AI支援薬物発見のための体系的なOODデータセットキュレーターおよびベンチマークであるTarmOODを提案する。
DrugOODには、ベンチマークプロセスを完全に自動化するオープンソースのPythonパッケージが付属している。
我々は、薬物標的結合親和性予測という、AIDDにおける最も重要な問題の1つに焦点を当てる。
論文 参考訳(メタデータ) (2022-01-24T12:32:48Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。