論文の概要: Advancing Sentiment Analysis: A Novel LSTM Framework with Multi-head Attention
- arxiv url: http://arxiv.org/abs/2503.08079v1
- Date: Tue, 11 Mar 2025 06:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:25.021261
- Title: Advancing Sentiment Analysis: A Novel LSTM Framework with Multi-head Attention
- Title(参考訳): 感性分析の高度化:多面的注意を伴う新しいLSTMフレームワーク
- Authors: Jingyuan Yi, Peiyang Yu, Tianyi Huang, Xiaochuan Xu,
- Abstract要約: 本研究では,マルチヘッドアテンション機構とTF-IDF最適化を用いたLSTMに基づく感情分類モデルを提案する。
公開データセットの実験結果から,新しい手法は精度,リコール,F1スコアといった重要な指標を大幅に改善することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work proposes an LSTM-based sentiment classification model with multi-head attention mechanism and TF-IDF optimization. Through the integration of TF-IDF feature extraction and multi-head attention, the model significantly improves text sentiment analysis performance. Experimental results on public data sets demonstrate that the new method achieves substantial improvements in the most critical metrics like accuracy, recall, and F1-score compared to baseline models. Specifically, the model achieves an accuracy of 80.28% on the test set, which is improved by about 12% in comparison with standard LSTM models. Ablation experiments also support the necessity and necessity of all modules, in which the impact of multi-head attention is greatest to performance improvement. This research provides a proper approach to sentiment analysis, which can be utilized in public opinion monitoring, product recommendation, etc.
- Abstract(参考訳): 本研究では,マルチヘッドアテンション機構とTF-IDF最適化を用いたLSTMに基づく感情分類モデルを提案する。
TF-IDF特徴抽出とマルチヘッドアテンションの統合により、本モデルはテキスト感情分析性能を大幅に改善する。
公開データセットの実験結果から,新しい手法は,ベースラインモデルと比較して精度,リコール,F1スコアといった重要な指標を大幅に改善することが示された。
具体的には、標準のLSTMモデルと比較して約12%改善されたテストセットで80.28%の精度を達成した。
アブレーション実験はまた、全てのモジュールの必要性と必要性をサポートし、マルチヘッドの注意がパフォーマンス改善に最も貢献する。
本研究は、世論監視や製品レコメンデーションなどに利用できる感情分析への適切なアプローチを提供する。
関連論文リスト
- CDS: Data Synthesis Method Guided by Cognitive Diagnosis Theory [38.32540433374892]
大規模言語モデル(LLM)は大きな進歩を遂げているが、タスクの複雑さが増し、高いパフォーマンス要求が継続的改善の必要性を浮き彫りにしている。
いくつかの手法は、列車モデルの評価結果に基づいて、先進LLMによって生成された合成データを利用する。
本稿では,認知診断理論(CDT)にインスパイアされた診断プロセスを取り入れた認知診断合成(CDS)手法を提案する。
論文 参考訳(メタデータ) (2025-01-13T20:13:59Z) - EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation [58.546205554954454]
臨界観測(EACO)によるMLLMのアライメント向上を提案する。
EACOは、経済的に5k画像のみを使用して、MLLMを自己生成の選好データで整列する。
EACOは幻覚全体の65.6%をHalusionBenchで減らし、MME-Cognitionで21.8%改善する。
論文 参考訳(メタデータ) (2024-12-06T09:59:47Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - Advancing Financial Risk Prediction Through Optimized LSTM Model Performance and Comparative Analysis [12.575399233846092]
本稿では、金融リスク予測におけるLSTMモデルの適用と最適化に焦点を当てる。
最適化LSTMモデルは、ランダムフォレスト、BPニューラルネットワーク、XGBoostと比較して、AUC指数において大きな利点を示す。
論文 参考訳(メタデータ) (2024-05-31T03:31:17Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
データの増大はOOD性能を継続的に向上させることを示す。
また, CF拡張モデルのキャリブレーションが容易な場合, 重要度を割り当てる場合, エントロピーがはるかに低いことを示す。
論文 参考訳(メタデータ) (2023-09-14T16:16:40Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - DiversiGATE: A Comprehensive Framework for Reliable Large Language
Models [2.616506436169964]
LLM検証のための多種多様な方法論を統合する統合フレームワークであるDiversiGATEを導入する。
本稿では,DiversiGATEフレームワークに準拠した新たなセルフラーナーモデルを提案する。
提案手法は従来のLLMよりも優れており,GSM8Kベンチマークでは54.8%から61.8%の改善が達成されている。
論文 参考訳(メタデータ) (2023-06-22T22:29:40Z) - The DONUT Approach to EnsembleCombination Forecasting [0.0]
本稿では,M4Competitionデータセット上で強力な結果を示すアンサンブル予測手法を提案する。
提案手法は,主に自動生成機能と,より多様なモデルプールで構成され,統計的特徴に基づくアンサンブル法であるFFORMAよりも優れていた。
また,M4データセット上での線形最適化による差分を定量化するために,アンサンブルの最適組み合わせと選択に関する公式なポストファクト解析を行った。
論文 参考訳(メタデータ) (2022-01-02T22:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。