Few-Shot Class-Incremental Model Attribution Using Learnable Representation From CLIP-ViT Features
- URL: http://arxiv.org/abs/2503.08148v1
- Date: Tue, 11 Mar 2025 08:05:26 GMT
- Title: Few-Shot Class-Incremental Model Attribution Using Learnable Representation From CLIP-ViT Features
- Authors: Hanbyul Lee, Juneho Yi,
- Abstract summary: This work proposes a new strategy to deal with persistently emerging generative models.<n>We adapt few-shot class-incremental learning (FSCIL) mechanisms for MA problem to uncover novel generative AI models.<n>To learn an effective representation, we propose Adaptive Integration Module (AIM) to calculate a weighted sum of CLIP-ViT block features for each image.
- Score: 1.534667887016089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, images that distort or fabricate facts using generative models have become a social concern. To cope with continuous evolution of generative artificial intelligence (AI) models, model attribution (MA) is necessary beyond just detection of synthetic images. However, current deep learning-based MA methods must be trained from scratch with new data to recognize unseen models, which is time-consuming and data-intensive. This work proposes a new strategy to deal with persistently emerging generative models. We adapt few-shot class-incremental learning (FSCIL) mechanisms for MA problem to uncover novel generative AI models. Unlike existing FSCIL approaches that focus on object classification using high-level information, MA requires analyzing low-level details like color and texture in synthetic images. Thus, we utilize a learnable representation from different levels of CLIP-ViT features. To learn an effective representation, we propose Adaptive Integration Module (AIM) to calculate a weighted sum of CLIP-ViT block features for each image, enhancing the ability to identify generative models. Extensive experiments show our method effectively extends from prior generative models to recent ones.
Related papers
- Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data.<n>This often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns.<n>We propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives.
arXiv Detail & Related papers (2024-12-09T21:36:10Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Class-Prototype Conditional Diffusion Model with Gradient Projection for Continual Learning [20.175586324567025]
Mitigating catastrophic forgetting is a key hurdle in continual learning.
A major issue is the deterioration in the quality of generated data compared to the original.
We propose a GR-based approach for continual learning that enhances image quality in generators.
arXiv Detail & Related papers (2023-12-10T17:39:42Z) - Heterogeneous Generative Knowledge Distillation with Masked Image
Modeling [33.95780732124864]
Masked image modeling (MIM) methods achieve great success in various visual tasks but remain largely unexplored in knowledge distillation for heterogeneous deep models.
We develop the first Heterogeneous Generative Knowledge Distillation (H-GKD) based on MIM, which can efficiently transfer knowledge from large Transformer models to small CNN-based models in a generative self-supervised fashion.
Our method is a simple yet effective learning paradigm to learn the visual representation and distribution of data from heterogeneous teacher models.
arXiv Detail & Related papers (2023-09-18T08:30:55Z) - Revisiting Temporal Modeling for CLIP-based Image-to-Video Knowledge
Transferring [82.84513669453744]
Image-text pretrained models, e.g., CLIP, have shown impressive general multi-modal knowledge learned from large-scale image-text data pairs.
We revisit temporal modeling in the context of image-to-video knowledge transferring.
We present a simple and effective temporal modeling mechanism extending CLIP model to diverse video tasks.
arXiv Detail & Related papers (2023-01-26T14:12:02Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
We propose an innovative unified framework that integrates the data generation and model training stages into a unified process.
Our approach utilizes a pure Vision Transformer (ViT)-based conditional Generative Adversarial Network (cGAN) model to simultaneously handle both image synthesis and classification.
Our experiments show that our unified synthetic augmentation framework consistently enhances the performance of histopathology image classification models.
arXiv Detail & Related papers (2022-12-20T03:40:44Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.