Learning-based Models for Vulnerability Detection: An Extensive Study
- URL: http://arxiv.org/abs/2408.07526v1
- Date: Wed, 14 Aug 2024 13:01:30 GMT
- Title: Learning-based Models for Vulnerability Detection: An Extensive Study
- Authors: Chao Ni, Liyu Shen, Xiaodan Xu, Xin Yin, Shaohua Wang,
- Abstract summary: We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
- Score: 3.1317409221921144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though many deep learning-based models have made great progress in vulnerability detection, we have no good understanding of these models, which limits the further advancement of model capability, understanding of the mechanism of model detection, and efficiency and safety of practical application of models. In this paper, we extensively and comprehensively investigate two types of state-of-the-art learning-based approaches (sequence-based and graph-based) by conducting experiments on a recently built large-scale dataset. We investigate seven research questions from five dimensions, namely model capabilities, model interpretation, model stability, ease of use of model, and model economy. We experimentally demonstrate the priority of sequence-based models and the limited abilities of both LLM (ChatGPT) and graph-based models. We explore the types of vulnerability that learning-based models skilled in and reveal the instability of the models though the input is subtlely semantical-equivalently changed. We empirically explain what the models have learned. We summarize the pre-processing as well as requirements for easily using the models. Finally, we initially induce the vital information for economically and safely practical usage of these models.
Related papers
- Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks [4.872984658007499]
Implicit models such as Deep Equilibrium Models (DEQs) have garnered significant attention in the community for their ability to train infinite layer models.
We revisit the line of implicit models and trace them back to the original weight-tied models.
Surprisingly, we observe that weight-tied models are more effective, stable, as well as efficient on vision tasks, compared to the DEQ variants.
arXiv Detail & Related papers (2023-07-16T11:45:35Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
Common practice in model-based reinforcement learning is to learn models that model every aspect of the agent's environment.
We argue that such models are not particularly well-suited for performing scalable and robust planning in lifelong reinforcement learning scenarios.
We propose new kinds of models that only model the relevant aspects of the environment, which we call "minimal value-minimal partial models"
arXiv Detail & Related papers (2023-01-24T16:40:01Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
We surveyed and reproduced 9 state-of-the-art deep learning models on 2 widely used vulnerability detection datasets.
We investigated model capabilities, training data, and model interpretation.
Our findings can help better understand model results, provide guidance on preparing training data, and improve the robustness of the models.
arXiv Detail & Related papers (2022-12-15T19:49:34Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.