論文の概要: Depth-Assisted Network for Indiscernible Marine Object Counting with Adaptive Motion-Differentiated Feature Encoding
- arxiv url: http://arxiv.org/abs/2503.08152v1
- Date: Tue, 11 Mar 2025 08:08:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:43:35.220114
- Title: Depth-Assisted Network for Indiscernible Marine Object Counting with Adaptive Motion-Differentiated Feature Encoding
- Title(参考訳): 適応的運動識別特徴符号化による識別不能な海洋物体の深度支援ネットワーク
- Authors: Chengzhi Ma, Kunqian Li, Shuaixin Liu, Han Mei,
- Abstract要約: 識別不能な海洋生物の数え方は、水中のシーンの視認性に制限があるなど、多くの課題に遭遇する。
我々は50の動画からなる新しいデータセットを開発し、そこから800のフレームを抽出し、約40のポイントワイドオブジェクトラベルで注釈付けした。
このデータセットは、認識不能な海洋生物が周囲と複雑に統合された実際の水中環境を正確に表現する。
- 参考スコア(独自算出の注目度): 2.3552699229345264
- License:
- Abstract: Indiscernible marine object counting encounters numerous challenges, including limited visibility in underwater scenes, mutual occlusion and overlap among objects, and the dynamic similarity in appearance, color, and texture between the background and foreground. These factors significantly complicate the counting process. To address the scarcity of video-based indiscernible object counting datasets, we have developed a novel dataset comprising 50 videos, from which approximately 800 frames have been extracted and annotated with around 40,800 point-wise object labels. This dataset accurately represents real underwater environments where indiscernible marine objects are intricately integrated with their surroundings, thereby comprehensively illustrating the aforementioned challenges in object counting. To address these challenges, we propose a depth-assisted network with adaptive motion-differentiated feature encoding. The network consists of a backbone encoding module and three branches: a depth-assisting branch, a density estimation branch, and a motion weight generation branch. Depth-aware features extracted by the depth-assisting branch are enhanced via a depth-enhanced encoder to improve object representation. Meanwhile, weights from the motion weight generation branch refine multi-scale perception features in the adaptive flow estimation module. Experimental results demonstrate that our method not only achieves state-of-the-art performance on the proposed dataset but also yields competitive results on three additional video-based crowd counting datasets. The pre-trained model, code, and dataset are publicly available at https://github.com/OUCVisionGroup/VIMOC-Net.
- Abstract(参考訳): 不明瞭な海洋生物の数え方は、水中のシーンの視認性に限界があること、物体間の相互閉塞と重なり合い、背景と前景の間の外観、色、テクスチャの動的類似性など、多くの課題に遭遇する。
これらの要因は計数過程を著しく複雑にする。
ビデオベースで認識不能なオブジェクトカウントデータセットの不足に対処するため,約800のフレームを抽出し,約40,800のポイントワイドオブジェクトラベルで注釈付けした,50のビデオからなる新しいデータセットを開発した。
このデータセットは、認識不能な海洋生物が周囲と複雑に統合された実際の水中環境を正確に表現し、前述の物体カウントの課題を包括的に説明する。
これらの課題に対処するために,適応的な動き微分特徴符号化を用いた深度支援ネットワークを提案する。
ネットワークは、バックボーン符号化モジュールと、深さアシストブランチ、密度推定ブランチ、および運動量生成ブランチの3つのブランチから構成される。
深度アシスト分岐によって抽出された深度認識機能は、深度強調エンコーダを介して強化され、オブジェクト表現が改善される。
一方, 運動量生成部からの重みは適応流量推定モジュールのマルチスケール知覚特性を洗練させる。
実験の結果,提案手法は,提案したデータセットの最先端性能を達成するだけでなく,3つの追加のビデオベースクラウドカウントデータセットの競合結果が得られることがわかった。
トレーニング済みのモデル、コード、データセットはhttps://github.com/OUCVisionGroup/VIMOC-Netで公開されている。
関連論文リスト
- DepthLab: From Partial to Complete [80.58276388743306]
不足する値は、幅広いアプリケーションにわたる深度データにとって共通の課題である。
この作業は、イメージ拡散プリエントを利用した基礎深度塗装モデルであるDepthLabと、このギャップを埋めるものだ。
提案手法は,3Dシーンのインペイント,テキストから3Dシーン生成,DUST3Rによるスパースビュー再構成,LiDAR深度補完など,様々なダウンストリームタスクにおいて有用であることを示す。
論文 参考訳(メタデータ) (2024-12-24T04:16:38Z) - A Density-Guided Temporal Attention Transformer for Indiscernible Object
Counting in Underwater Video [27.329015161325962]
周囲に混在する対象の数を数えることを目的とした、識別不能な対象数カウントは、課題となっている。
本稿では,35の高精細ビデオを含むYoutubeFish-35という大規模データセットを提案する。
統合されたフレームワークにおいて、時間領域に沿って密度と回帰の分岐を結合した新しい強力なベースラインであるTransVidCountを提案する。
論文 参考訳(メタデータ) (2024-03-06T04:54:00Z) - Manydepth2: Motion-Aware Self-Supervised Multi-Frame Monocular Depth Estimation in Dynamic Scenes [45.070725750859786]
動的オブジェクトと静的背景の両方に対して正確な深度推定を実現するため,Marydepth2を提案する。
動的コンテンツによって引き起こされる課題に対処するために、光学的流れと粗い単分子深度を取り入れて擬似静的参照フレームを作成する。
このフレームを使用して、バニラターゲットフレームと協調してモーション対応のコストボリュームを構築する。
論文 参考訳(メタデータ) (2023-12-23T14:36:27Z) - A bioinspired three-stage model for camouflaged object detection [8.11866601771984]
本稿では,1回の繰り返しで粗い部分分割を可能にする3段階モデルを提案する。
本モデルでは, 3つのデコーダを用いて, サブサンプル特徴, 収穫特徴, および高解像度のオリジナル特徴を逐次処理する。
我々のネットワークは、不要な複雑さを伴わずに最先端のCNNベースのネットワークを上回る。
論文 参考訳(メタデータ) (2023-05-22T02:01:48Z) - Efficient Unsupervised Video Object Segmentation Network Based on Motion
Guidance [1.5736899098702974]
本稿では,モーションガイダンスに基づく映像オブジェクト分割ネットワークを提案する。
モデルは、デュアルストリームネットワーク、モーションガイダンスモジュール、マルチスケールプログレッシブフュージョンモジュールを含む。
実験により,提案手法の優れた性能が証明された。
論文 参考訳(メタデータ) (2022-11-10T06:13:23Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - DynOcc: Learning Single-View Depth from Dynamic Occlusion Cues [37.837552043766166]
In-the-wild シーンからなる第1の深度データセット DynOcc を導入する。
提案手法は,これらのダイナミックシーンの手がかりを利用して,選択したビデオフレームのポイント間の深さ関係を推定する。
DynOccデータセットには、91Kフレームのさまざまなビデオセットから22Mの深さペアが含まれています。
論文 参考訳(メタデータ) (2021-03-30T22:17:36Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z) - Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method [52.182698295053264]
リモートセンシング画像から高密度物体をカウントすることに興味がある。自然界における物体のカウントと比較すると、このタスクは、大規模変動、複雑な乱れ背景、配向仲裁といった要因において困難である。
これらの課題に対処するために,我々はまず,4つの重要な地理的対象を含むリモートセンシング画像を用いた大規模オブジェクトカウントデータセットを構築した。
次に、入力画像の密度マップを生成する新しいニューラルネットワークを設計することで、データセットをベンチマークする。
論文 参考訳(メタデータ) (2020-08-28T03:47:49Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z) - Counting dense objects in remote sensing images [52.182698295053264]
特定の画像から関心のあるオブジェクトの数を推定するのは、難しいが重要な作業である。
本稿では,リモートセンシング画像から高密度物体を数えることに興味がある。
これらの課題に対処するために,我々はまず,リモートセンシング画像に基づく大規模オブジェクトカウントデータセットを構築した。
次に、入力画像の密度マップを生成する新しいニューラルネットワークを設計することで、データセットをベンチマークする。
論文 参考訳(メタデータ) (2020-02-14T09:13:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。