Investigating the Effectiveness of a Socratic Chain-of-Thoughts Reasoning Method for Task Planning in Robotics, A Case Study
- URL: http://arxiv.org/abs/2503.08174v1
- Date: Tue, 11 Mar 2025 08:36:37 GMT
- Title: Investigating the Effectiveness of a Socratic Chain-of-Thoughts Reasoning Method for Task Planning in Robotics, A Case Study
- Authors: Veronica Bot, Zheyuan Xu,
- Abstract summary: We investigate whether large language models (LLMs) are capable of navigating complex spatial tasks with physical actions in the real world.<n>We apply GPT-4( Omni) with a simulated Tiago robot in Webots engine for an object search task.<n>Preliminary results show that when combined with chain-of-thought reasoning, the Socratic method can be used for code generation for robotic tasks that require spatial awareness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated unprecedented capability in reasoning with natural language. Coupled with this development is the emergence of embodied AI in robotics. Despite showing promise for verbal and written reasoning tasks, it remains unknown whether LLMs are capable of navigating complex spatial tasks with physical actions in the real world. To this end, it is of interest to investigate applying LLMs to robotics in zero-shot learning scenarios, and in the absence of fine-tuning - a feat which could significantly improve human-robot interaction, alleviate compute cost, and eliminate low-level programming tasks associated with robot tasks. To explore this question, we apply GPT-4(Omni) with a simulated Tiago robot in Webots engine for an object search task. We evaluate the effectiveness of three reasoning strategies based on Chain-of-Thought (CoT) sub-task list generation with the Socratic method (SocraCoT) (in order of increasing rigor): (1) Non-CoT/Non-SocraCoT, (2) CoT only, and (3) SocraCoT. Performance was measured in terms of the proportion of tasks successfully completed and execution time (N = 20). Our preliminary results show that when combined with chain-of-thought reasoning, the Socratic method can be used for code generation for robotic tasks that require spatial awareness. In extension of this finding, we propose EVINCE-LoC; a modified EVINCE method that could further enhance performance in highly complex and or dynamic testing scenarios.
Related papers
- REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.
ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models [5.2364456910271935]
Reinforcement Learning (RL) enables agents to autonomously optimize complex behaviors through interaction and reward signals.<n>In this work, we propose an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions.<n>The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility.
arXiv Detail & Related papers (2025-03-06T10:08:44Z) - Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based reinforcement learning algorithm.
We study our algorithm on 53 robotic tasks with sparse and dense rewards, as well as with and without demonstrations.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Large Language Models for Orchestrating Bimanual Robots [19.60907949776435]
We present LAnguage-model-based Bimanual ORchestration (LABOR) to analyze task configurations and devise coordination control policies.
We evaluate our method through simulated experiments involving two classes of long-horizon tasks using the NICOL humanoid robot.
arXiv Detail & Related papers (2024-04-02T15:08:35Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on
Robots [46.13039152809055]
We present a novel algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers.
Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines.
arXiv Detail & Related papers (2020-04-18T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.