iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on
Robots
- URL: http://arxiv.org/abs/2004.08672v2
- Date: Sun, 1 Oct 2023 00:56:27 GMT
- Title: iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on
Robots
- Authors: Shiqi Zhang, Piyush Khandelwal, Peter Stone
- Abstract summary: We present a novel algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers.
Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines.
- Score: 46.13039152809055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot sequential decision-making in the real world is a challenge because it
requires the robots to simultaneously reason about the current world state and
dynamics, while planning actions to accomplish complex tasks. On the one hand,
declarative languages and reasoning algorithms well support representing and
reasoning with commonsense knowledge. But these algorithms are not good at
planning actions toward maximizing cumulative reward over a long, unspecified
horizon. On the other hand, probabilistic planning frameworks, such as Markov
decision processes (MDPs) and partially observable MDPs (POMDPs), well support
planning to achieve long-term goals under uncertainty. But they are
ill-equipped to represent or reason about knowledge that is not directly
related to actions.
In this article, we present a novel algorithm, called iCORPP, to
simultaneously estimate the current world state, reason about world dynamics,
and construct task-oriented controllers. In this process, robot decision-making
problems are decomposed into two interdependent (smaller) subproblems that
focus on reasoning to "understand the world" and planning to "achieve the goal"
respectively. Contextual knowledge is represented in the reasoning component,
which makes the planning component epistemic and enables active information
gathering. The developed algorithm has been implemented and evaluated both in
simulation and on real robots using everyday service tasks, such as indoor
navigation, dialog management, and object delivery. Results show significant
improvements in scalability, efficiency, and adaptiveness, compared to
competitive baselines including handcrafted action policies.
Related papers
- Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - CoPAL: Corrective Planning of Robot Actions with Large Language Models [8.209152055117283]
We propose a system architecture that orchestrates a seamless interplay between cognitive levels, encompassing reasoning, planning, and motion generation.
At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans.
arXiv Detail & Related papers (2023-10-11T07:39:42Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Achieving mouse-level strategic evasion performance using real-time
computational planning [59.60094442546867]
Planning is an extraordinary ability in which the brain imagines and then enacts evaluated possible futures.
We develop a more efficient biologically-inspired planning algorithm, TLPPO, based on work on how the ecology of an animal governs the value of spatial planning.
We compare the performance of a real-time agent using TLPPO against the performance of live mice, all tasked with evading a robot predator.
arXiv Detail & Related papers (2022-11-04T18:34:36Z) - Robot Task Planning and Situation Handling in Open Worlds [10.077350377962482]
This paper introduces a novel algorithm for open-world task planning and situation handling.
COWP dynamically augments the robot's action knowledge with task-oriented common sense.
This version has been accepted for publication in Autonomous Robots.
arXiv Detail & Related papers (2022-10-04T00:21:00Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Knowledge-Based Hierarchical POMDPs for Task Planning [0.34998703934432684]
The main goal in task planning is to build a sequence of actions that takes an agent from an initial state to a goal state.
In robotics, this is particularly difficult because actions usually have several possible results, and sensors are prone to produce measurements with error.
We present a scheme to encode knowledge about the robot and its environment, that promotes the modularity and reuse of information.
arXiv Detail & Related papers (2021-03-19T05:45:05Z) - Attention-Based Planning with Active Perception [21.35365462532568]
This paper develops a computational model of attention and an algorithm for attention-based probabilistic planning in Markov decision processes.
By switching between different attention modes, the robot actively perceives task-relevant information to reduce the cost of information acquisition and processing, while achieving near-optimal task performance.
arXiv Detail & Related papers (2020-11-30T19:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.