論文の概要: Mutation Testing via Iterative Large Language Model-Driven Scientific Debugging
- arxiv url: http://arxiv.org/abs/2503.08182v1
- Date: Tue, 11 Mar 2025 08:47:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:15.796644
- Title: Mutation Testing via Iterative Large Language Model-Driven Scientific Debugging
- Title(参考訳): 反復型大規模言語モデル駆動型科学的デバッグによる突然変異テスト
- Authors: Philipp Straubinger, Marvin Kreis, Stephan Lukasczyk, Gordon Fraser,
- Abstract要約: 我々は,Large Language Models (LLM) が変異体に対するテストを生成する上で,科学的計算が有効かどうかを評価する。
LLMは、より良い障害検出とカバレッジを持つテストを生成する上で、Pynguinを一貫して上回っている。
重要なことは、テストケースの反復的な改善が高品質なテストスイートを実現する上で重要であるということだ。
- 参考スコア(独自算出の注目度): 10.334617290353192
- License:
- Abstract: Large Language Models (LLMs) can generate plausible test code. Intuitively they generate this by imitating tests seen in their training data, rather than reasoning about execution semantics. However, such reasoning is important when applying mutation testing, where individual tests need to demonstrate differences in program behavior between a program and specific artificial defects (mutants). In this paper, we evaluate whether Scientific Debugging, which has been shown to help LLMs when debugging, can also help them to generate tests for mutants. In the resulting approach, LLMs form hypotheses about how to kill specific mutants, and then iteratively generate and refine tests until they succeed, all with detailed explanations for each step. We compare this method to three baselines: (1) directly asking the LLM to generate tests, (2) repeatedly querying the LLM when tests fail, and (3) search-based test generation with Pynguin. Our experiments evaluate these methods based on several factors, including mutation score, code coverage, success rate, and the ability to identify equivalent mutants. The results demonstrate that LLMs, although requiring higher computation cost, consistently outperform Pynguin in generating tests with better fault detection and coverage. Importantly, we observe that the iterative refinement of test cases is important for achieving high-quality test suites.
- Abstract(参考訳): 大規模言語モデル(LLM)は、妥当なテストコードを生成することができる。
直感的には、実行セマンティクスを推論するのではなく、トレーニングデータに見られるテストを模倣することでこれを生成します。
しかし、このような推論は、プログラムと特定の人工欠陥(変異体)の間のプログラムの振る舞いの違いを個別のテストで示す必要がある突然変異検査を適用する際に重要である。
本稿では,LLMのデバッグに有効な科学的デバッグが,ミュータントに対するテスト生成にも有効であるかどうかを評価する。
結果として、LSMは特定の変異体をどうやって殺すかという仮説を作り、成功するまで反復的にテストを生成し、精査する。
本手法を,(1) LLMにテスト生成を直接依頼すること,(2) テスト失敗時に繰り返しLCMに問い合わせること,(3) Pynguin を用いた検索ベーステスト生成の3つのベースラインと比較した。
本研究は, 突然変異率, コードカバレッジ, 成功率, 等価変異体を同定する能力など, 様々な要因に基づいて評価した。
その結果, LLMは高い計算コストを必要とするが, より優れた故障検出とカバレッジを持つテスト生成において, 一貫してPynguinを上回っていることがわかった。
重要なことは、テストケースの反復的な改善が高品質なテストスイートを実現する上で重要であるということだ。
関連論文リスト
- Improving the Readability of Automatically Generated Tests using Large Language Models [7.7149881834358345]
探索型ジェネレータの有効性とLLM生成試験の可読性を組み合わせることを提案する。
提案手法は,検索ツールが生成するテスト名や変数名の改善に重点を置いている。
論文 参考訳(メタデータ) (2024-12-25T09:08:53Z) - Do LLMs generate test oracles that capture the actual or the expected program behaviour? [7.772338538073763]
大きな言語モデル(LLM)は、開発者のようなコードやテストケースを生成するために、膨大な量のデータに基づいて訓練されています。
この調査には、開発者によって書かれ、自動生成されるテストケースと、24のオープンソースJavaリポジトリのオーラクルが含まれている。
LLMは正しいオーラクルを分類するよりもテストオーラクルを生成する方が優れており、コードが有意義なテスト名や変数名を含む場合、よりよいテストオーラクルを生成することができる。
論文 参考訳(メタデータ) (2024-10-28T15:37:06Z) - SYNTHEVAL: Hybrid Behavioral Testing of NLP Models with Synthetic CheckLists [59.08999823652293]
我々は,NLPモデルの包括的評価のために,SyntheVALを提案する。
最後の段階では、人間の専門家が困難な例を調査し、手動でテンプレートを設計し、タスク固有のモデルが一貫して示す障害の種類を特定します。
我々は、感情分析と有害言語検出という2つの分類課題にSynTHEVALを適用し、これらの課題における強力なモデルの弱点を特定するのに、我々のフレームワークが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-30T17:41:30Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
大規模言語モデルが高品質なテストケースをいかに生み出すかを検討する。
本稿では,テストインプットとテストアウトプットの生成を分離するemphTestChainというマルチエージェントフレームワークを提案する。
以上の結果から,TestChainはベースラインのマージンを大きく上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-20T10:27:01Z) - LLM-Powered Test Case Generation for Detecting Tricky Bugs [30.82169191775785]
AIDは、少なくとも正しいプログラムをターゲットにしたテスト入力とオラクルを生成する。
TrickyBugs と EvalPlus の2つの大規模データセットに対する AID の評価を行った。
その結果,AIDのリコール,精度,F1スコアは,それぞれ1.80x,2.65x,1.66xに優れていた。
論文 参考訳(メタデータ) (2024-04-16T06:20:06Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。