論文の概要: To Use or Not to Use a Universal Force Field
- arxiv url: http://arxiv.org/abs/2503.08207v1
- Date: Tue, 11 Mar 2025 09:23:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:37.387772
- Title: To Use or Not to Use a Universal Force Field
- Title(参考訳): ユニバーサルフォースフィールドの使用の有無
- Authors: Denan Li, Jiyuan Yang, Xiangkai Chen, Lintao Yu, Shi Liu,
- Abstract要約: 機械学習力場(MLFF)は分子動力学(MD)シミュレーションの強力なツールとして登場した。
このパースペクティブは、複合材料システムのシミュレーションのための普遍的MLFFの実現可能性を評価する。
- 参考スコア(独自算出の注目度): 1.25431689228423
- License:
- Abstract: Artificial intelligence (AI) is revolutionizing scientific research, particularly in computational materials science, by enabling more accurate and efficient simulations. Machine learning force fields (MLFFs) have emerged as powerful tools for molecular dynamics (MD) simulations, potentially offering quantum-mechanical accuracy with the efficiency of classical MD. This Perspective evaluates the viability of universal MLFFs for simulating complex materials systems from the standpoint of a potential practitioner. Using the temperature-driven ferroelectric-paraelectric phase transition of PbTiO$_3$ as a benchmark, we assess leading universal force fields, including CHGNet, MACE, M3GNet, and GPTFF, alongside specialized models like UniPero. While universal MLFFs trained on PBE-derived datasets perform well in predicting equilibrium properties, they largely fail to capture realistic finite-temperature phase transitions under constant-pressure MD, often exhibiting unphysical instabilities. These shortcomings stem from inherited biases in exchange-correlation functionals and limited generalization to anharmonic interactions governing dynamic behavior. However, fine-tuning universal models or employing system-specific MLFFs like UniPero successfully restores predictive accuracy. We advocates for hybrid approaches combining universal pretraining with targeted optimization, improved error quantification frameworks, and community-driven benchmarks to advance MLFFs as robust tools for computational materials discovery.
- Abstract(参考訳): 人工知能(AI)は科学研究、特に計算材料科学に革命をもたらし、より正確で効率的なシミュレーションを可能にしている。
機械学習力場(MLFF)は、分子動力学(MD)シミュレーションの強力なツールとして登場し、古典的MDの効率で量子力学的精度を提供する可能性がある。
このパースペクティブは、潜在的実践者の立場から、複合材料システムのシミュレーションのための普遍的なMLFFの実現可能性を評価する。
温度駆動型PbTiO$_3$の強誘電率-誘電率相転移をベンチマークとして,CHGNet,MACE,M3GNet,GPTFFなどの有界力場をUniPeroなどの特殊モデルとともに評価した。
PBE由来のデータセットで訓練された普遍的なMLFFは平衡特性を予測するのにうまく機能するが、定圧MDの下では現実的な有限温度相転移を捉えることができず、しばしば非物理的不安定を示す。
これらの欠点は、交換相関関数の継承バイアスと、動的挙動を管理する非調和相互作用への限定的な一般化に由来する。
しかし、微調整のユニバーサルモデルや、UniPeroのようなシステム固有のMLFFを採用することで、予測精度の回復に成功している。
我々は,汎用的な事前学習と目標とする最適化,エラー定量化フレームワークの改善,およびMLFFを計算材料発見のための堅牢なツールとして前進させるためのコミュニティ主導のベンチマークを組み合わせたハイブリッドアプローチを提唱する。
関連論文リスト
- MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
現在のMLLM(Multi-Modal Large Language Models)は、一般的な視覚的推論タスクにおいて強力な機能を示している。
我々は,MLLMに基づく物理知覚とシミュレーションによるマルチモーダル科学推論(MAPS)という新しいフレームワークを開発した。
MAPSは、専門家レベルのマルチモーダル推論タスクを物理的知覚モデル(PPM)を介して物理図理解に分解し、シミュレータを介して物理的知識で推論する。
論文 参考訳(メタデータ) (2025-01-18T13:54:00Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体としてモデル化し、理想化された仮定なしに現実的な変形を考慮に入れた。
ガウシムは質量や運動量保存などの明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Generalizability of Graph Neural Network Force Fields for Predicting Solid-State Properties [8.405078403907241]
機械学習力場(MLFF)は、複雑な分子系に対するアブ初期シミュレーションの計算的に効率的な代替手段を提供する。
本研究では、グラフニューラルネットワーク(GNN)ベースのMLFFを用いて、トレーニング中に明示的に含まない固体現象を記述する能力について検討する。
論文 参考訳(メタデータ) (2024-09-16T02:14:26Z) - Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning [3.321322648845526]
機械学習原子間ポテンシャル(MLIP)は原子シミュレーションの新しいパラダイムを導入した。
近年,多種多様な資料データセットで事前学習したユニバーサルMLIP(uMLIP)が出現している。
分布外の複雑な原子環境に対する外挿性能はいまだに不明である。
論文 参考訳(メタデータ) (2024-05-11T22:30:47Z) - EL-MLFFs: Ensemble Learning of Machine Leaning Force Fields [1.8367772188990783]
機械学習力場(MLFF)は、量子力学的手法の精度を橋渡しするための有望なアプローチとして登場した。
本稿では,多種多様なMLFFからの予測を統合するため,階層化手法を利用した新しいアンサンブル学習フレームワークEL-MLFFを提案する。
我々は,Cu(100)表面に吸着したメタン分子とメタノールの2つの異なるデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-03-26T09:09:40Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations [5.138982355658199]
分子動力学(MD)シミュレーション技術は様々な自然科学応用に広く用いられている。
我々は、最先端(SOTA)ML FFモデルの集合をベンチマークし、特に、一般的にベンチマークされる力の精度が、関連するシミュレーション指標とうまく一致していないことを示す。
論文 参考訳(メタデータ) (2022-10-13T17:59:03Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
物理や機械学習に基づく反応力場は、時間と長さのスケールのギャップを埋めるために使うことができる。
本稿では,原子周囲の電子密度の物理的に関連する多極展開を利用するガウス多極(GMP)デデュール化スキームを紹介する。
我々は,GMPに基づくモデルがQM9データセットの化学的精度を達成できることを示し,新しい要素を外挿してもその精度は妥当であることを示した。
論文 参考訳(メタデータ) (2021-02-04T03:11:00Z) - Machine Learning Force Fields [54.48599172620472]
機械学習(ML)は、計算化学の多くの進歩を可能にした。
最も有望な応用の1つは、MLベースの力場(FF)の構築である。
本稿では,ML-FFの応用と,それらから得られる化学的知見について概説する。
論文 参考訳(メタデータ) (2020-10-14T13:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。