To Use or Not to Use a Universal Force Field
- URL: http://arxiv.org/abs/2503.08207v1
- Date: Tue, 11 Mar 2025 09:23:01 GMT
- Title: To Use or Not to Use a Universal Force Field
- Authors: Denan Li, Jiyuan Yang, Xiangkai Chen, Lintao Yu, Shi Liu,
- Abstract summary: Machine learning force fields (MLFFs) have emerged as powerful tools for molecular dynamics (MD) simulations.<n>This Perspective evaluates the viability of universal MLFFs for simulating complex materials systems.
- Score: 1.25431689228423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) is revolutionizing scientific research, particularly in computational materials science, by enabling more accurate and efficient simulations. Machine learning force fields (MLFFs) have emerged as powerful tools for molecular dynamics (MD) simulations, potentially offering quantum-mechanical accuracy with the efficiency of classical MD. This Perspective evaluates the viability of universal MLFFs for simulating complex materials systems from the standpoint of a potential practitioner. Using the temperature-driven ferroelectric-paraelectric phase transition of PbTiO$_3$ as a benchmark, we assess leading universal force fields, including CHGNet, MACE, M3GNet, and GPTFF, alongside specialized models like UniPero. While universal MLFFs trained on PBE-derived datasets perform well in predicting equilibrium properties, they largely fail to capture realistic finite-temperature phase transitions under constant-pressure MD, often exhibiting unphysical instabilities. These shortcomings stem from inherited biases in exchange-correlation functionals and limited generalization to anharmonic interactions governing dynamic behavior. However, fine-tuning universal models or employing system-specific MLFFs like UniPero successfully restores predictive accuracy. We advocates for hybrid approaches combining universal pretraining with targeted optimization, improved error quantification frameworks, and community-driven benchmarks to advance MLFFs as robust tools for computational materials discovery.
Related papers
- MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Generalizability of Graph Neural Network Force Fields for Predicting Solid-State Properties [8.405078403907241]
Machine-learned force fields (MLFFs) promise to offer a computationally efficient alternative to ab initio simulations for complex molecular systems.
This work investigates the ability of a graph neural network (GNN)-based MLFF to describe solid-state phenomena not explicitly included during training.
arXiv Detail & Related papers (2024-09-16T02:14:26Z) - Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning [3.321322648845526]
Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic simulations.
Recent advancements have seen the emergence of universal MLIPs (uMLIPs) that are pre-trained on diverse materials datasets.
We show that their performance in extrapolating to out-of-distribution complex atomic environments remains unclear.
arXiv Detail & Related papers (2024-05-11T22:30:47Z) - EL-MLFFs: Ensemble Learning of Machine Leaning Force Fields [1.8367772188990783]
Machine learning force fields (MLFFs) have emerged as a promising approach to bridge the accuracy of quantum mechanical methods.
We propose a novel ensemble learning framework, EL-MLFFs, which leverages the stacking method to integrate predictions from diverse MLFFs.
We evaluate our approach on two distinct datasets: methane molecules and methanol adsorbed on a Cu(100) surface.
arXiv Detail & Related papers (2024-03-26T09:09:40Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations [5.138982355658199]
Molecular dynamics (MD) simulation techniques are widely used for various natural science applications.
We benchmark a collection of state-of-the-art (SOTA) ML FF models and illustrate, in particular, how the commonly benchmarked force accuracy is not well aligned with relevant simulation metrics.
arXiv Detail & Related papers (2022-10-13T17:59:03Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z) - Machine Learning Force Fields [54.48599172620472]
Machine Learning (ML) has enabled numerous advances in computational chemistry.
One of the most promising applications is the construction of ML-based force fields (FFs)
This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them.
arXiv Detail & Related papers (2020-10-14T13:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.