MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
- URL: http://arxiv.org/abs/2501.10768v1
- Date: Sat, 18 Jan 2025 13:54:00 GMT
- Title: MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
- Authors: Erle Zhu, Yadi Liu, Zhe Zhang, Xujun Li, Jin Zhou, Xinjie Yu, Minlie Huang, Hongning Wang,
- Abstract summary: Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.<n>We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.<n>MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
- Score: 62.96434290874878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
Related papers
- Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.
We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.
We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Energy & Force Regression on DFT Trajectories is Not Enough for Universal Machine Learning Interatomic Potentials [8.254607304215451]
Universal Machine Learning Interactomic Potentials (MLIPs) enable accelerated simulations for materials discovery.
MLIPs' inability to reliably and accurately perform large-scale molecular dynamics (MD) simulations for diverse materials.
arXiv Detail & Related papers (2025-02-05T23:04:21Z) - Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
We introduce EMMA, a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding.<n>EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality.<n>Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks.
arXiv Detail & Related papers (2025-01-09T18:55:52Z) - Synthetic Vision: Training Vision-Language Models to Understand Physics [9.474337395173388]
We propose two methods to enhance Vision-Language Models' physical reasoning capabilities using simulated data.<n>First, we fine-tune a pre-trained VLM using question-answer pairs generated from simulations relevant to physical reasoning tasks.<n>Second, we introduce Physics Context Builders (PCBs) to create scene descriptions enriched with physical properties and processes.
arXiv Detail & Related papers (2024-12-11T18:40:16Z) - Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics [1.1510009152620668]
We show how the Mass Conserving Perceptron (MCP) can be used as the fundamental computational unit in a generic network architecture.<n>We show that physical interpretability and excellent predictive performance can both be achieved using a relatively parsimonious distributed-state multiple-flow-path network.
arXiv Detail & Related papers (2024-12-06T08:30:01Z) - LLMPhy: Complex Physical Reasoning Using Large Language Models and World Models [35.01842161084472]
We propose a new physical reasoning task and a dataset, dubbed TraySim.<n>Our task involves predicting the dynamics of several objects on a tray that is given an external impact.<n>We present LLMPhy, a zero-shot black-box optimization framework that leverages the physics knowledge and program synthesis abilities of LLMs.<n>Our results show that the combination of the LLM and the physics engine leads to state-of-the-art zero-shot physical reasoning performance.
arXiv Detail & Related papers (2024-11-12T18:56:58Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems [1.1510009152620668]
We propose a physically-interpretable Mass Conserving Perceptron (MCP) as a way to bridge the gap between PC-based and ML-based modeling approaches.
The MCP exploits the inherent isomorphism between the directed graph structures underlying both PC models and GRNNs to explicitly represent the mass-conserving nature of physical processes.
arXiv Detail & Related papers (2023-10-12T18:09:33Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints.
The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models.
This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control.
arXiv Detail & Related papers (2023-06-24T05:24:48Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
This paper compares the use of MDD and ABMS platforms in terms of effort and developer mistakes.
The obtained results show that MDD4ABMS requires less effort to develop simulations with similar (sometimes better) design quality than NetLogo.
arXiv Detail & Related papers (2020-06-15T23:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.