論文の概要: Are Foundational Atomistic Models Reliable for Finite-Temperature Molecular Dynamics?
- arxiv url: http://arxiv.org/abs/2503.08207v2
- Date: Tue, 04 Nov 2025 07:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 20:56:28.977976
- Title: Are Foundational Atomistic Models Reliable for Finite-Temperature Molecular Dynamics?
- Title(参考訳): 基本原子論モデルは有限温度分子動力学に信頼性があるか?
- Authors: Denan Li, Jiyuan Yang, Xiangkai Chen, Lintao Yu, Shi Liu,
- Abstract要約: 機械学習力場は分子動力学(MD)シミュレーションのための有望なツールとして登場した。
これらの基本的な原子論モデルは、最も説得力のあるアプリケーションの1つに信頼性がありますか?
- 参考スコア(独自算出の注目度): 5.017458218949553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning force fields have emerged as promising tools for molecular dynamics (MD) simulations, potentially offering quantum-mechanical accuracy with the efficiency of classical MD. Inspired by foundational large language models, recent years have seen considerable progress in developing foundational atomistic models, sometimes referred to as universal force fields, designed to cover most elements in the periodic table. This Perspective adopts a practitioner's viewpoint to ask a critical question: Are these foundational atomistic models reliable for one of their most compelling applications, in particular simulating finite-temperature dynamics? Instead of a broad benchmark, we use the canonical ferroelectric-paraelectric phase transition in PbTiO$_3$ as a focused case study to evaluate prominent foundational atomistic models. Our findings suggest a potential disconnect between static accuracy and dynamic reliability. While 0 K properties are often well-reproduced, we observed that the models can struggle to consistently capture the correct phase transition, sometimes exhibiting simulation instabilities. We believe these challenges may stem from inherent biases in training data and a limited description of anharmonicity. These observed shortcomings, though demonstrated on a single system, appear to point to broader, systemic challenges that can be addressed with targeted fine-tuning. This Perspective serves not to rank models, but to initiate a crucial discussion on the practical readiness of foundational atomistic models and to explore future directions for their improvement.
- Abstract(参考訳): 機械学習力場は分子動力学(MD)シミュレーションのための有望なツールとして登場し、古典的MDの効率で量子力学的精度を提供する可能性がある。
基礎的な大きな言語モデルに着想を得た近年では、周期表のほとんどの要素をカバーするように設計された基本原子論モデル(時に普遍力場と呼ばれる)の開発が著しい進歩を遂げている。
これらの基礎的な原子論モデルは、最も説得力のある応用の1つ、特に有限温度力学のシミュレーションに信頼できるか?
広範ベンチマークの代わりに、PbTiO$_3$の正準強誘電体-常電相転移を集中ケーススタディとして使用して、顕著な基礎原子モデルを評価する。
以上の結果から,静的精度と動的信頼性の欠如が示唆された。
0K特性はよく再現されるが、モデルが常に正しい相転移を捉えるのに苦労し、時にシミュレーション不安定性を示すことが観察された。
これらの課題は、トレーニングデータに固有のバイアスと、無調和性の限定的な記述に起因していると考えています。
これらの観察された欠点は、単一のシステムで実証されたものの、対象とする微調整に対処できるより広範な、体系的な課題を指し示しているように見える。
このパースペクティブは、モデルをランク付けするのではなく、基礎的な原子論モデルの実用的準備性に関する決定的な議論を開始し、その改善に向けた将来の方向性を探求するのに役立つ。
関連論文リスト
- OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics [25.066485418709114]
OmniFluidsは、物理を事前訓練した演算子学習フレームワークである。
物理学のみの事前訓練、粗い乾燥したオペレーター蒸留、および数発の微調整を統合している。
流れ場再構成や乱流統計の精度において、最先端のAI駆動手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2025-06-12T16:23:02Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
現在のMLLM(Multi-Modal Large Language Models)は、一般的な視覚的推論タスクにおいて強力な機能を示している。
我々は,MLLMに基づく物理知覚とシミュレーションによるマルチモーダル科学推論(MAPS)という新しいフレームワークを開発した。
MAPSは、専門家レベルのマルチモーダル推論タスクを物理的知覚モデル(PPM)を介して物理図理解に分解し、シミュレータを介して物理的知識で推論する。
論文 参考訳(メタデータ) (2025-01-18T13:54:00Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体を表すCenter of Mass System (CMS)として扱う。
さらに、ガウスシムは質量や運動量保存のような明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Generalizability of Graph Neural Network Force Fields for Predicting Solid-State Properties [8.405078403907241]
機械学習力場(MLFF)は、複雑な分子系に対するアブ初期シミュレーションの計算的に効率的な代替手段を提供する。
本研究では、グラフニューラルネットワーク(GNN)ベースのMLFFを用いて、トレーニング中に明示的に含まない固体現象を記述する能力について検討する。
論文 参考訳(メタデータ) (2024-09-16T02:14:26Z) - Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning [3.321322648845526]
機械学習原子間ポテンシャル(MLIP)は原子シミュレーションの新しいパラダイムを導入した。
近年,多種多様な資料データセットで事前学習したユニバーサルMLIP(uMLIP)が出現している。
分布外の複雑な原子環境に対する外挿性能はいまだに不明である。
論文 参考訳(メタデータ) (2024-05-11T22:30:47Z) - EL-MLFFs: Ensemble Learning of Machine Leaning Force Fields [1.8367772188990783]
機械学習力場(MLFF)は、量子力学的手法の精度を橋渡しするための有望なアプローチとして登場した。
本稿では,多種多様なMLFFからの予測を統合するため,階層化手法を利用した新しいアンサンブル学習フレームワークEL-MLFFを提案する。
我々は,Cu(100)表面に吸着したメタン分子とメタノールの2つの異なるデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-03-26T09:09:40Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations [5.138982355658199]
分子動力学(MD)シミュレーション技術は様々な自然科学応用に広く用いられている。
我々は、最先端(SOTA)ML FFモデルの集合をベンチマークし、特に、一般的にベンチマークされる力の精度が、関連するシミュレーション指標とうまく一致していないことを示す。
論文 参考訳(メタデータ) (2022-10-13T17:59:03Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
物理や機械学習に基づく反応力場は、時間と長さのスケールのギャップを埋めるために使うことができる。
本稿では,原子周囲の電子密度の物理的に関連する多極展開を利用するガウス多極(GMP)デデュール化スキームを紹介する。
我々は,GMPに基づくモデルがQM9データセットの化学的精度を達成できることを示し,新しい要素を外挿してもその精度は妥当であることを示した。
論文 参考訳(メタデータ) (2021-02-04T03:11:00Z) - Machine Learning Force Fields [54.48599172620472]
機械学習(ML)は、計算化学の多くの進歩を可能にした。
最も有望な応用の1つは、MLベースの力場(FF)の構築である。
本稿では,ML-FFの応用と,それらから得られる化学的知見について概説する。
論文 参考訳(メタデータ) (2020-10-14T13:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。