論文の概要: Explaining Human Preferences via Metrics for Structured 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2503.08208v1
- Date: Tue, 11 Mar 2025 09:23:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:43:28.052219
- Title: Explaining Human Preferences via Metrics for Structured 3D Reconstruction
- Title(参考訳): 構造的3次元再構成のためのメトリクスによる人間の嗜好の説明
- Authors: Jack Langerman, Denys Rozumnyi, Yuzhong Huang, Dmytro Mishkin,
- Abstract要約: 本稿では,構造化3次元再構成評価のための自動計測値の詳細な評価を行う。
人間の専門的判断から抽出した学習指標を提案し,分析した。
- 参考スコア(独自算出の注目度): 8.126484775796078
- License:
- Abstract: "What cannot be measured cannot be improved" while likely never uttered by Lord Kelvin, summarizes effectively the purpose of this work. This paper presents a detailed evaluation of automated metrics for evaluating structured 3D reconstructions. Pitfalls of each metric are discussed, and a thorough analyses through the lens of expert 3D modelers' preferences is presented. A set of systematic "unit tests" are proposed to empirically verify desirable properties, and context aware recommendations as to which metric to use depending on application are provided. Finally, a learned metric distilled from human expert judgments is proposed and analyzed.
- Abstract(参考訳): 「測定できないものは改善できない」が、ケルヴィン卿によって発せられることはないだろうが、この作品の目的を効果的に要約している。
本稿では,構造化3次元再構成評価のための自動計測値の詳細な評価を行う。
それぞれの計量の落とし穴を議論し、専門家の3Dモデリング者の好みのレンズを通して徹底的に分析する。
望ましい特性を実証的に検証するために、体系的な「単体テスト」のセットが提案され、アプリケーションに応じてどのメトリクスを使用するかというコンテキスト対応の勧告が提案されている。
最後に,人間の専門的判断から抽出した学習指標を提案し,分析した。
関連論文リスト
- Comparative Evaluation of 3D Reconstruction Methods for Object Pose Estimation [22.830136701433613]
本稿では,3次元再構成品質がポーズ推定精度に与える影響を評価するための新しいベンチマークを提案する。
複数の最先端の3D再構成とオブジェクトポーズ推定手法による詳細な実験により、現代的な再構成手法によって生成された幾何学が、正確なポーズ推定に十分であることが示された。
論文 参考訳(メタデータ) (2024-08-15T15:58:11Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Establishing a Unified Evaluation Framework for Human Motion Generation: A Comparative Analysis of Metrics [6.708543240320757]
本稿では,人体動作生成のための8つの評価指標について詳細に検討する。
我々は一貫したモデル比較を容易にするため、統一的な評価設定を通じて標準化されたプラクティスを提案する。
変形する多様性を分析して時間歪みの多様性を評価する新しい指標を提案する。
論文 参考訳(メタデータ) (2024-05-13T12:10:57Z) - Is Reference Necessary in the Evaluation of NLG Systems? When and Where? [58.52957222172377]
基準自由度は人間の判断と高い相関を示し,言語品質の低下に対する感度が高いことを示す。
本研究は,自動測定の適切な適用方法と,測定値の選択が評価性能に与える影響について考察する。
論文 参考訳(メタデータ) (2024-03-21T10:31:11Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning [63.77667876176978]
大規模言語モデルでは、最終回答を正当化するためにステップバイステップの推論を生成するように促された場合、ダウンストリームタスクの解釈可能性が改善されている。
これらの推論ステップは、モデルの解釈可能性と検証を大幅に改善するが、客観的にそれらの正確性を研究することは困難である。
本稿では、従来のテキスト生成評価指標を改善し拡張する、解釈可能な教師なし自動スコアのスイートであるROSを提案する。
論文 参考訳(メタデータ) (2022-12-15T15:52:39Z) - Triplet Losses-based Matrix Factorization for Robust Recommendations [0.76146285961466]
複数の三重項損失項を用いてユーザとアイテムの意味表現を抽出する。
いくつかの「バイアス認識」評価指標を用いて,これらの表現の音質を実証的に評価した。
論文 参考訳(メタデータ) (2022-10-21T16:44:59Z) - From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction [80.67873933010783]
我々は,MDPが現在,3Dアプリケーションにおける予測の有用性を評価するのに有効な指標に頼っていることを論じる。
これにより、2Dベースの距離を最適化するのではなく、シーンの3D構造を正確に認識し、推定に向けて改善する新しい手法の設計と開発が制限される。
本稿では,MDP手法の3次元幾何評価に適した指標セットと,提案手法に不可欠な室内ベンチマークRIO-D3Dを提案する。
論文 参考訳(メタデータ) (2022-03-15T17:50:54Z) - Evaluation of Similarity-based Explanations [36.10585276728203]
ユーザに対して合理的な説明を提供するための関連指標について検討した。
実験の結果,損失の勾配のコサイン類似性が最も良好であることが判明した。
テストでパフォーマンスが悪く、失敗の原因を分析したメトリクスもあります。
論文 参考訳(メタデータ) (2020-06-08T12:39:46Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。