論文の概要: S3R-GS: Streamlining the Pipeline for Large-Scale Street Scene Reconstruction
- arxiv url: http://arxiv.org/abs/2503.08217v1
- Date: Tue, 11 Mar 2025 09:37:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:43:26.926461
- Title: S3R-GS: Streamlining the Pipeline for Large-Scale Street Scene Reconstruction
- Title(参考訳): S3R-GS:大規模ストリートシーン再構築のためのパイプラインの合理化
- Authors: Guangting Zheng, Jiajun Deng, Xiaomeng Chu, Yu Yuan, Houqiang Li, Yanyong Zhang,
- Abstract要約: 3D Gaussian Splatting(3DGS)は、3D再構成の分野を変え、素晴らしいレンダリング品質とスピードを実現した。
既存の手法では、シーンサイズが大きくなるにつれて、ビューポイント当たりの再生コストが急速に増大する。
大規模なストリートシーン再構築のためのパイプラインをストリーム化する3DGSフレームワークであるS3R-GSを提案する。
- 参考スコア(独自算出の注目度): 58.37746062258149
- License:
- Abstract: Recently, 3D Gaussian Splatting (3DGS) has reshaped the field of photorealistic 3D reconstruction, achieving impressive rendering quality and speed. However, when applied to large-scale street scenes, existing methods suffer from rapidly escalating per-viewpoint reconstruction costs as scene size increases, leading to significant computational overhead. After revisiting the conventional pipeline, we identify three key factors accounting for this issue: unnecessary local-to-global transformations, excessive 3D-to-2D projections, and inefficient rendering of distant content. To address these challenges, we propose S3R-GS, a 3DGS framework that Streamlines the pipeline for large-scale Street Scene Reconstruction, effectively mitigating these limitations. Moreover, most existing street 3DGS methods rely on ground-truth 3D bounding boxes to separate dynamic and static components, but 3D bounding boxes are difficult to obtain, limiting real-world applicability. To address this, we propose an alternative solution with 2D boxes, which are easier to annotate or can be predicted by off-the-shelf vision foundation models. Such designs together make S3R-GS readily adapt to large, in-the-wild scenarios. Extensive experiments demonstrate that S3R-GS enhances rendering quality and significantly accelerates reconstruction. Remarkably, when applied to videos from the challenging Argoverse2 dataset, it achieves state-of-the-art PSNR and SSIM, reducing reconstruction time to below 50%--and even 20%--of competing methods.
- Abstract(参考訳): 近年,3Dガウススプラッティング(3DGS)はフォトリアリスティックな3D再構成の領域を再構築し,レンダリングの質とスピードを向上している。
しかし、大規模なストリートシーンに適用した場合、既存の手法では、シーンサイズが大きくなるにつれてビューポイント単位の再構築コストが急速に増大し、計算オーバーヘッドが大幅に増大する。
従来のパイプラインを再検討した結果,不必要な局所-グローバル変換,過剰な3次元-2次元投影,非効率な遠隔コンテンツのレンダリングという3つの重要な要因が明らかになった。
これらの課題に対処するために,大規模なストリートシーン再構築のためのパイプラインをストリーム化する3DGSフレームワークであるS3R-GSを提案する。
さらに、既存のストリート3DGS法の多くは、動的および静的なコンポーネントを分離するために、3Dバウンディングボックスに依存しているが、3Dバウンディングボックスは取得が困難であり、現実の応用性が制限されている。
そこで本研究では,市販のビジョンファウンデーションモデルによりアノテーションや予測が容易な2Dボックスを用いた代替ソリューションを提案する。
このような設計により、S3R-GS は大型の現場でのシナリオに容易に適応できる。
大規模な実験により、S3R-GSはレンダリング品質を高め、再構成を大幅に加速することが示された。
注目すべきは、Argoverse2データセットの挑戦的なビデオに適用することで、最先端のPSNRとSSIMを実現し、再構築時間を50%以下に短縮し、競合する手法の20%にまで短縮する。
関連論文リスト
- CoSurfGS:Collaborative 3D Surface Gaussian Splatting with Distributed Learning for Large Scene Reconstruction [68.81212850946318]
大規模表面再構成のための分散学習に基づく多エージェント協調高速3DGS表面再構成フレームワークを提案する。
具体的には,局所モデル圧縮(LMC)とモデルアグリゲーションスキーム(MAS)を開発し,大規模シーンの高品質な表面表現を実現する。
提案手法は高速でスケーラブルな高忠実表面再構成とフォトリアリスティックレンダリングを実現する。
論文 参考訳(メタデータ) (2024-12-23T14:31:15Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - 3DGS-Enhancer: Enhancing Unbounded 3D Gaussian Splatting with View-consistent 2D Diffusion Priors [13.191199172286508]
新規ビュー合成は、複数の入力画像やビデオからシーンの新しいビューを生成することを目的としている。
3DGS-Enhancerは、3DGS表現の表現品質を向上させるための新しいパイプラインである。
論文 参考訳(メタデータ) (2024-10-21T17:59:09Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
3DGSによる閉塞や外見の変化に対処する新しいアプローチであるWildGaussiansを紹介した。
我々はWildGaussianが3DGSとNeRFのベースラインを越えながら3DGSのリアルタイムレンダリング速度と一致していることを示す。
論文 参考訳(メタデータ) (2024-07-11T12:41:32Z) - SpikeGS: Reconstruct 3D scene via fast-moving bio-inspired sensors [25.51366779254847]
Spike Gausian Splatting (SpikeGS)は、スパイクストリームを3DGSパイプラインに統合し、素早く動くバイオインスパイアされたカメラで3Dシーンを再構築するフレームワークである。
SpikeGSは、高時間分解能から詳細な幾何学とテクスチャを抽出するが、スパイクストリームを欠いたテクスチャは、1秒でキャプチャされた3Dシーンを再構成する。
論文 参考訳(メタデータ) (2024-07-04T09:32:12Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGSは高速移動下で高忠実度3D構造と外観を再構築することができる。
複数の合成および実世界のデータセットの実験は、既存のイベントベースの高密度な3Dシーン再構築フレームワークと比較して、Event3DGSの優位性を示している。
また, 構造的精度を損なうことなく, 外観の忠実度をより高められるように, フレームベースで数回の動特性測定を再構成プロセスに組み込むことも可能である。
論文 参考訳(メタデータ) (2024-06-05T06:06:03Z) - Bootstrap-GS: Self-Supervised Augmentation for High-Fidelity Gaussian Splatting [9.817215106596146]
3D-GSは、トレーニング中に遭遇したものとは大きく異なる、新しいビューを生成する際に制限に直面します。
この問題に対処するためのブートストラップフレームワークを導入します。
提案手法は,限られたトレーニングセットと整合した新しい視点から,擬似地下真実を合成する。
論文 参考訳(メタデータ) (2024-04-29T12:57:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。