Confinement to deterministic manifolds and low-dimensional solution formulas for continuously measured quantum systems
- URL: http://arxiv.org/abs/2503.08296v1
- Date: Tue, 11 Mar 2025 11:08:03 GMT
- Title: Confinement to deterministic manifolds and low-dimensional solution formulas for continuously measured quantum systems
- Authors: Alain Sarlette, Cyril Elouard, Pierre Rouchon,
- Abstract summary: Note draws attention to the observation that, in several settings of interest for quantum engineering, this diffusion in fact takes place in low dimension.<n> Namely, the state remains confined in a low-dimensional nonlinear manifold, often time-dependent, but independent of the measurement results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum systems under continuous weak measurement follow stochastic differential equations (SDE). Depending on the stochastic measurement results indeed, the quantum state can progressively diffuse, a priori in all directions of state space. This note draws attention to the observation that, in several settings of interest for quantum engineering, this diffusion in fact takes place in low dimension. Namely, the state remains confined in a low-dimensional nonlinear manifold, often time-dependent, but independent of the measurement results. The note provides the corresponding low-dimensional expressions for computing the stochastically evolving state in several such settings: quantum non-demolition measurement in arbitrary dimensions; quadrature measurements on a harmonic oscillator (linear quantum system); and subsystem measurement in multi-partite quantum systems. An algebraic criterion is proposed to directly check when such low-dimensional manifolds exist or survive under additional dynamics.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Stochastic entropy production associated with quantum measurement in a framework of Markovian quantum state diffusion [0.0]
We investigate a two level open quantum system using a framework of quantum state diffusion.<n>We consider the unpredictability of its reduced density matrix when subjected to an environment-driven process of continuous quantum measurement.
arXiv Detail & Related papers (2023-01-19T17:47:39Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum non-demolition measurements of moving target states [0.0]
We present a protocol for probing the state of a quantum system by its resonant coupling and entanglement with a meter system.
We infer the evolution of the entangled systems and, ultimately, the state and dynamics of the system of interest.
arXiv Detail & Related papers (2022-01-11T12:54:41Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.