Quantum non-demolition measurements of moving target states
- URL: http://arxiv.org/abs/2201.03918v2
- Date: Tue, 18 Jan 2022 10:57:43 GMT
- Title: Quantum non-demolition measurements of moving target states
- Authors: A. L. Andersen, K. M{\o}lmer
- Abstract summary: We present a protocol for probing the state of a quantum system by its resonant coupling and entanglement with a meter system.
We infer the evolution of the entangled systems and, ultimately, the state and dynamics of the system of interest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a protocol for probing the state of a quantum system by its
resonant coupling and entanglement with a meter system. By continuous
measurement of a time evolving meter observable, we infer the evolution of the
entangled systems and, ultimately, the state and dynamics of the system of
interest. The photon number in a cavity field is thus resolved by simulated
monitoring of the time dependent excited state population of a resonantly
coupled two-level system, and we propose to regard this as an extension of
quantum non-demolition measurements with potential applications in quantum
metrology and quantum computing.
Related papers
- Quantum-limited generalized measurement for tunnel-coupled condensates [0.4335300149154109]
We implement a generalized measurement scheme based on controlled outcoupling of atoms.
This gives us simultaneous access to number imbalance and relative phase in a system of two tunnel-coupled 1D Bose gases.
arXiv Detail & Related papers (2024-08-13T16:06:59Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum retrodiction in Gaussian systems and applications in
optomechanics [0.9065034043031668]
The task of quantum state retrodiction is rigorously and elegantly addressed in quantum measurement theory.
This article presents its practical formulation for retrodicting Gaussian quantum states using continuous-time homodyne measurements.
We identify and achievable retrodictive POVMs in common optomechanical operating modes with resonant or off-resonant driving fields.
arXiv Detail & Related papers (2023-09-07T06:36:11Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Stochastic approach to evolution of a quantum system interacting with a
wave packet in squeezed number state [0.0]
We determine filtering and master equations for a quantum system interacting with wave packet of light in a continuous-mode squeezed number state.
We formulate the problem of conditional evolution of a quantum system making use of model of repeated interactions and measurements.
arXiv Detail & Related papers (2023-03-21T19:42:15Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions [0.0]
In ergodic many-body quantum systems, locally encoded quantum information becomes inaccessible to local measurements.
We present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator.
We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring R'enyi entanglement entropies.
arXiv Detail & Related papers (2020-01-07T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.