論文の概要: MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2503.08328v1
- Date: Tue, 11 Mar 2025 11:40:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:18.558054
- Title: MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting
- Title(参考訳): MFRS: スケーラブルで正確な時系列予測のためのマルチ周波数参照シリーズアプローチ
- Authors: Liang Yu, Lai Tu, Xiang Bai,
- Abstract要約: 時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 51.94256702463408
- License:
- Abstract: Multivariate time-series forecasting holds immense value across diverse applications, requiring methods to effectively capture complex temporal and inter-variable dynamics. A key challenge lies in uncovering the intrinsic patterns that govern predictability, beyond conventional designs, focusing on network architectures to explore latent relationships or temporal dependencies. Inspired by signal decomposition, this paper posits that time series predictability is derived from periodic characteristics at different frequencies. Consequently, we propose a novel time series forecasting method based on multi-frequency reference series correlation analysis. Through spectral analysis on long-term training data, we identify dominant spectral components and their harmonics to design base-pattern reference series. Unlike signal decomposition, which represents the original series as a linear combination of basis signals, our method uses a transformer model to compute cross-attention between the original series and reference series, capturing essential features for forecasting. Experiments on major open and synthetic datasets show state-of-the-art performance. Furthermore, by focusing on attention with a small number of reference series rather than pairwise variable attention, our method ensures scalability and broad applicability. The source code is available at: https://github.com/yuliang555/MFRS
- Abstract(参考訳): 多変量時系列予測は、様々なアプリケーションにまたがって大きな価値を持ち、複雑な時間的および変数間ダイナミクスを効果的に捉える方法を必要とする。
重要な課題は、予測可能性を支配する固有のパターンを明らかにすることであり、従来の設計を超えて、潜伏関係や時間的依存を探索するネットワークアーキテクチャに焦点を当てている。
本稿では,信号分解にインスパイアされた時系列予測が,周波数の異なる周期特性から導出されることを示唆する。
そこで本研究では,マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
長期学習データに対するスペクトル分析により,主成分とその調和性を同定し,基本パターン参照系列を設計する。
元の系列を基底信号の線形結合として表現する信号分解とは違って,本手法ではトランスフォーマモデルを用いて元の系列と参照系列の相互アテンションを計算し,予測に不可欠な特徴を捉える。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
さらに,多変数の注意よりも少数の参照系列に注意を集中させることにより,拡張性と広範囲な適用性を確保する。
ソースコードは、https://github.com/yuliang555/MFRSで入手できる。
関連論文リスト
- EDformer: Embedded Decomposition Transformer for Interpretable Multivariate Time Series Predictions [4.075971633195745]
本稿では,時系列予測タスクのための組込みトランス「EDformer」を提案する。
基本要素を変更することなく、Transformerアーキテクチャを再利用し、その構成部品の有能な機能について検討する。
このモデルは、複雑な実世界の時系列データセットの精度と効率の観点から、最先端の予測結果を得る。
論文 参考訳(メタデータ) (2024-12-16T11:13:57Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための因果変換器Timer-XLを提案する。
大規模な事前トレーニングに基づいて、Timer-XLは最先端のゼロショット性能を達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time
Series Forecasting [19.573651104129443]
長期の時系列予測は、様々な現実のシナリオにおいて重要な役割を果たす。
近年の時系列予測の深層学習手法は,分解法やサンプリング法により時系列の複雑なパターンを捉える傾向にある。
本稿では,MPPN(Multi- resolution Periodic Pattern Network)という,長期連続予測のための新しいディープラーニングネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-12T07:00:37Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - A Pattern Discovery Approach to Multivariate Time Series Forecasting [27.130141538089152]
モデル複雑性は時系列の長さとともに指数関数的に増加するので、最先端のディープラーニング手法はフルタイムのモデルの構築に失敗する。
本稿では,多種多様な時系列パターンを自動的にキャプチャできる新しいパターン探索手法を提案する。
また,学習可能な相関行列を提案し,複数の時系列間の相関関係をモデル化する。
論文 参考訳(メタデータ) (2022-12-20T14:54:04Z) - An Unsupervised Short- and Long-Term Mask Representation for
Multivariate Time Series Anomaly Detection [2.387411589813086]
本稿では,教師なし短時間・長期マスク表現学習(SLMR)に基づく異常検出手法を提案する。
実験により,本手法の性能は,実世界の3つのデータセットにおいて,他の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-19T09:34:11Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。