Embodied Crowd Counting
- URL: http://arxiv.org/abs/2503.08367v1
- Date: Tue, 11 Mar 2025 12:23:34 GMT
- Title: Embodied Crowd Counting
- Authors: Runling Long, Yunlong Wang, Jia Wan, Xiang Deng, Xinting Zhu, Weili Guan, Antoni B. Chan, Liqiang Nie,
- Abstract summary: Embodied Crowd Counting (ECC) is an interactive simulator that enables large scale scenes and large object quantity.<n>A prior probability distribution that approximates realistic crowd distribution is introduced to generate crowds.<n>This method contains a MLLM driven coarse-to-fine navigation mechanism, enabling active Z-axis exploration.
- Score: 86.10533153162476
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Occlusion is one of the fundamental challenges in crowd counting. In the community, various data-driven approaches have been developed to address this issue, yet their effectiveness is limited. This is mainly because most existing crowd counting datasets on which the methods are trained are based on passive cameras, restricting their ability to fully sense the environment. Recently, embodied navigation methods have shown significant potential in precise object detection in interactive scenes. These methods incorporate active camera settings, holding promise in addressing the fundamental issues in crowd counting. However, most existing methods are designed for indoor navigation, showing unknown performance in analyzing complex object distribution in large scale scenes, such as crowds. Besides, most existing embodied navigation datasets are indoor scenes with limited scale and object quantity, preventing them from being introduced into dense crowd analysis. Based on this, a novel task, Embodied Crowd Counting (ECC), is proposed. We first build up an interactive simulator, Embodied Crowd Counting Dataset (ECCD), which enables large scale scenes and large object quantity. A prior probability distribution that approximates realistic crowd distribution is introduced to generate crowds. Then, a zero-shot navigation method (ZECC) is proposed. This method contains a MLLM driven coarse-to-fine navigation mechanism, enabling active Z-axis exploration, and a normal-line-based crowd distribution analysis method for fine counting. Experimental results against baselines show that the proposed method achieves the best trade-off between counting accuracy and navigation cost.
Related papers
- ProgRoCC: A Progressive Approach to Rough Crowd Counting [66.09510514180593]
We label Rough Crowd Counting that delivers better accuracy on the basis of training data that is easier to acquire.
We propose an approach to the rough crowd counting problem based on CLIP, termed ProgRoCC.
Specifically, we introduce a progressive estimation learning strategy that determines the object count through a coarse-to-fine approach.
arXiv Detail & Related papers (2025-04-18T01:57:42Z) - Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM [55.93697196726016]
We propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM)
We show that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas.
Our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable to some supervised methods.
arXiv Detail & Related papers (2024-02-27T13:55:17Z) - Boosting Detection in Crowd Analysis via Underutilized Output Features [8.319283909091595]
Detection-based methods have been viewed unfavorably in crowd analysis due to their poor performance in dense crowds.
We argue that the potential of these methods has been underestimated, as they offer crucial information for crowd analysis that is often ignored.
We propose Crowd Hat, a plug-and-play module that can be easily integrated with existing detection models.
arXiv Detail & Related papers (2023-08-30T17:59:11Z) - Wisdom of (Binned) Crowds: A Bayesian Stratification Paradigm for Crowd
Counting [16.09823718637455]
We analyze the performance of crowd counting approaches across standard datasets at per strata level and in aggregate.
Our contributions represent a nuanced, statistically balanced and fine-grained characterization of performance for crowd counting approaches.
arXiv Detail & Related papers (2021-08-19T16:50:31Z) - PSCNet: Pyramidal Scale and Global Context Guided Network for Crowd
Counting [44.306790250158954]
This paper proposes a novel crowd counting approach based on pyramidal scale module (PSM) and global context module (GCM)
PSM is used to adaptively capture multi-scale information, which can identify a fine boundary of crowds with different image scales.
GCM is devised with low-complexity and lightweight manner, to make the interactive information across the channels of the feature maps more efficient.
arXiv Detail & Related papers (2020-12-07T11:35:56Z) - Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method [52.182698295053264]
We are interested in counting dense objects from remote sensing images. Compared with object counting in a natural scene, this task is challenging in the following factors: large scale variation, complex cluttered background, and orientation arbitrariness.
To address these issues, we first construct a large-scale object counting dataset with remote sensing images, which contains four important geographic objects.
We then benchmark the dataset by designing a novel neural network that can generate a density map of an input image.
arXiv Detail & Related papers (2020-08-28T03:47:49Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z) - JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method [92.15895515035795]
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations.
We propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation.
arXiv Detail & Related papers (2020-04-07T14:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.