($\boldsymbolθ_l, \boldsymbolθ_u$)-Parametric Multi-Task Optimization: Joint Search in Solution and Infinite Task Spaces
- URL: http://arxiv.org/abs/2503.08394v1
- Date: Tue, 11 Mar 2025 13:00:56 GMT
- Title: ($\boldsymbolθ_l, \boldsymbolθ_u$)-Parametric Multi-Task Optimization: Joint Search in Solution and Infinite Task Spaces
- Authors: Tingyang Wei, Jiao Liu, Abhishek Gupta, Puay Siew Tan, Yew-Soon Ong,
- Abstract summary: We consider a non-fixed and potentially infinite set of optimization tasks defined in a parameterized, continuous and bounded task space.<n>A novel ($boldsymboltheta_l$, $boldsymboltheta_u$)-PMTO algorithm is crafted to enable joint search over tasks and their solutions.
- Score: 26.296737191844336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task optimization is typically characterized by a fixed and finite set of optimization tasks. The present paper relaxes this condition by considering a non-fixed and potentially infinite set of optimization tasks defined in a parameterized, continuous and bounded task space. We refer to this unique problem setting as parametric multi-task optimization (PMTO). Assuming the bounds of the task parameters to be ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$), a novel ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$)-PMTO algorithm is crafted to enable joint search over tasks and their solutions. This joint search is supported by two approximation models: (1) for mapping solutions to the objective spaces of all tasks, which provably accelerates convergence by acting as a conduit for inter-task knowledge transfers, and (2) for probabilistically mapping tasks to the solution space, which facilitates evolutionary exploration of under-explored regions of the task space. At the end of a full ($\boldsymbol{\theta}_l$, $\boldsymbol{\theta}_u$)-PMTO run, the acquired models enable rapid identification of optimized solutions for any task lying within the specified bounds. This outcome is validated on both synthetic test problems and practical case studies, with the significant real-world applicability of PMTO shown towards fast reconfiguration of robot controllers under changing task conditions. The potential of PMTO to vastly speedup the search for solutions to minimax optimization problems is also demonstrated through an example in robust engineering design.
Related papers
- Multi-Task Model Merging via Adaptive Weight Disentanglement [69.7292615212444]
We introduce an Adaptive Weight Disentanglement method for model merging.<n>We successfully extract redundant vectors, and after their subtraction, the task vectors retain robust performance.
arXiv Detail & Related papers (2024-11-27T20:08:55Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Progressive Entropic Optimal Transport Solvers [33.821924561619895]
We propose a new class of EOT solvers (ProgOT) that can estimate both plans and transport maps.
We provide experimental evidence demonstrating that ProgOT is a faster and more robust alternative to standard solvers.
We also prove statistical consistency of our approach for estimating optimal transport maps.
arXiv Detail & Related papers (2024-06-07T16:33:08Z) - Parametric-Task MAP-Elites [3.499042782396682]
Parametric-Task MAP-Elites (PT-ME) is a new black-box algorithm for continuous multi-task optimization problems.
We show that PT-ME outperforms all baselines, including the deep reinforcement learning algorithm PPO on two parametric-task toy problems and a robotic problem in simulation.
arXiv Detail & Related papers (2024-02-02T10:04:29Z) - Active Representation Learning for General Task Space with Applications
in Robotics [44.36398212117328]
We propose an algorithmic framework for textitactive representation learning, where the learner optimally chooses which source tasks to sample from.
We provide several instantiations under this framework, from bilinear and feature-based nonlinear to general nonlinear cases.
Our algorithms outperform baselines by $20%-70%$ on average.
arXiv Detail & Related papers (2023-06-15T08:27:50Z) - FAMO: Fast Adaptive Multitask Optimization [48.59232177073481]
We introduce Fast Adaptive Multitask Optimization FAMO, a dynamic weighting method that decreases task losses in a balanced way.
Our results indicate that FAMO achieves comparable or superior performance to state-of-the-art gradient manipulation techniques.
arXiv Detail & Related papers (2023-06-06T15:39:54Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - Min-Max Bilevel Multi-objective Optimization with Applications in
Machine Learning [30.25074797092709]
This paper is the first to propose a min-max bilevel multi-objective optimization framework.
It highlights applications in representation learning and hyper-objective learning.
arXiv Detail & Related papers (2022-03-03T18:56:13Z) - Pruning Self-attentions into Convolutional Layers in Single Path [89.55361659622305]
Vision Transformers (ViTs) have achieved impressive performance over various computer vision tasks.
We propose Single-Path Vision Transformer pruning (SPViT) to efficiently and automatically compress the pre-trained ViTs.
Our SPViT can trim 52.0% FLOPs for DeiT-B and get an impressive 0.6% top-1 accuracy gain simultaneously.
arXiv Detail & Related papers (2021-11-23T11:35:54Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - MUMBO: MUlti-task Max-value Bayesian Optimization [10.10241176664951]
MUMBO is the first high-performing yet computationally efficient acquisition function for multi-task Bayesian optimization.
We derive a novel multi-task version of entropy search, delivering robust performance with low computational overheads.
arXiv Detail & Related papers (2020-06-22T09:31:55Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.