OpenRAG: Optimizing RAG End-to-End via In-Context Retrieval Learning
- URL: http://arxiv.org/abs/2503.08398v1
- Date: Tue, 11 Mar 2025 13:04:05 GMT
- Title: OpenRAG: Optimizing RAG End-to-End via In-Context Retrieval Learning
- Authors: Jiawei Zhou, Lei Chen,
- Abstract summary: We introduce OpenRAG, a RAG framework that is optimized end-to-end by tuning the retriever to capture in-context relevance.<n>Experiments across a wide range of tasks demonstrate that OpenRAG, by tuning a retriever end-to-end, leads to a consistent improvement of 4.0% over the original retriever.
- Score: 13.181087031343619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze and empirically show that the learned relevance for conventional information retrieval (IR) scenarios may be inconsistent in retrieval-augmented generation (RAG) scenarios. To bridge this gap, we introduce OpenRAG, a RAG framework that is optimized end-to-end by tuning the retriever to capture in-context relevance, enabling adaptation to the diverse and evolving needs. Extensive experiments across a wide range of tasks demonstrate that OpenRAG, by tuning a retriever end-to-end, leads to a consistent improvement of 4.0% over the original retriever, consistently outperforming existing state-of-the-art retrievers by 2.1%. Additionally, our results indicate that for some tasks, an end-to-end tuned 0.2B retriever can achieve improvements that surpass those of RAG-oriented or instruction-tuned 8B large language models (LLMs), highlighting the cost-effectiveness of our approach in enhancing RAG systems.
Related papers
- Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.
Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.
We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving [9.962031642362813]
Retrieval-augmented generation (RAG) is emerging as a popular approach for reliable LLM serving.
RAG is a structured abstraction that captures the wide range of RAG algorithms.
RAGO is a system optimization framework for efficient RAG serving.
arXiv Detail & Related papers (2025-03-18T18:58:13Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Towards Optimizing a Retrieval Augmented Generation using Large Language Model on Academic Data [4.322454918650575]
We focus on data retrieval, specifically targeting various study programs at a large technical university.
By exploring the integration of both open-source (e.g., Llama2, Mistral) and closed-source (GPT-3.5 and GPT-4) Large Language Models, we offer valuable insights into the application and optimization of RAG frameworks in domain-specific contexts.
arXiv Detail & Related papers (2024-11-13T08:43:37Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
arXiv Detail & Related papers (2024-09-21T18:39:53Z) - Stochastic RAG: End-to-End Retrieval-Augmented Generation through Expected Utility Maximization [35.74911182120259]
RAG is a novel approach for end-to-end optimization of retrieval-augmented generation (RAG) models.
We employ straight-through Gumbel-top-k that provides a differentiable approximation for sampling without replacement.
arXiv Detail & Related papers (2024-05-05T05:42:33Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q&A (Question-Answering) systems.
We propose the 'Blended RAG' method of leveraging semantic search techniques, such as Vector indexes and Sparse indexes, blended with hybrid query strategies.
Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets.
arXiv Detail & Related papers (2024-03-22T17:13:46Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores.
Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance.
We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option.
arXiv Detail & Related papers (2023-10-02T17:16:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.