論文の概要: CFNet: Optimizing Remote Sensing Change Detection through Content-Aware Enhancement
- arxiv url: http://arxiv.org/abs/2503.08505v1
- Date: Tue, 11 Mar 2025 14:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:42:36.853108
- Title: CFNet: Optimizing Remote Sensing Change Detection through Content-Aware Enhancement
- Title(参考訳): CFNet:コンテンツ認識によるリモートセンシング変更検出の最適化
- Authors: Fan Wu, Sijun Dong, Xiaoliang Meng,
- Abstract要約: 変更検出は、リモートセンシングにおいて重要かつ広く適用されるタスクである。
本稿では、コンテンツ認識戦略を重要視するコンテンツフォーカスネットワーク(CFNet)を提案する。
CFNetは、よく知られた3つの変更検出データセットで優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 4.526730851016049
- License:
- Abstract: Change detection is a crucial and widely applied task in remote sensing, aimed at identifying and analyzing changes occurring in the same geographical area over time. Due to variability in acquisition conditions, bi-temporal remote sensing images often exhibit significant differences in image style. Even with the powerful generalization capabilities of DNNs, these unpredictable style variations between bi-temporal images inevitably affect model's ability to accurately detect changed areas. To address issue above, we propose the Content Focuser Network (CFNet), which takes content-aware strategy as a key insight. CFNet employs EfficientNet-B5 as the backbone for feature extraction. To enhance the model's focus on the content features of images while mitigating the misleading effects of style features, we develop a constraint strategy that prioritizes the content features of bi-temporal images, termed Content-Aware. Furthermore, to enable the model to flexibly focus on changed and unchanged areas according to the requirements of different stages, we design a reweighting module based on the cosine distance between bi-temporal image features, termed Focuser. CFNet achieve outstanding performance across three well-known change detection datasets: CLCD (F1: 81.41%, IoU: 68.65%), LEVIR-CD (F1: 92.18%, IoU: 85.49%), and SYSU-CD (F1: 82.89%, IoU: 70.78%). The code and pretrained models of CFNet are publicly released at https://github.com/wifiBlack/CFNet.
- Abstract(参考訳): 変化検出はリモートセンシングにおいて重要なタスクであり、時間とともに同じ地理的領域で起きている変化を特定し分析することを目的としている。
取得条件の変動により、両時間リモートセンシング画像は画像のスタイルに有意な差異を呈することが多い。
DNNの強力な一般化機能にもかかわらず、両時間画像間の予測不可能なスタイルのバリエーションは、必然的に、変化した領域を正確に検出するモデルの能力に影響を及ぼす。
上記の課題に対処するため,コンテント・フォーカス・ネットワーク (CFNet) を提案する。
CFNetは機能抽出のバックボーンとしてEfficientNet-B5を使用している。
スタイル特徴の誤解を招く影響を緩和しつつ、画像のコンテンツ特徴に焦点を絞るために、両時間画像のコンテンツ特徴を優先する制約戦略を開発する。
さらに,異なる段階の要求に応じてモデルが変化・変化した領域に柔軟に焦点を合わせられるように,両時間画像特徴間のコサイン距離に基づいて重み付けモジュールを設計する。
CFNetは、CLCD(F1: 81.41%、IoU: 68.65%)、LEVIR-CD(F1: 92.18%、IoU: 85.49%)、SYSU-CD(F1: 82.89%、IoU: 70.78%)の3つの既知の変更検出データセットで優れたパフォーマンスを実現している。
CFNetのコードと事前訓練されたモデルはhttps://github.com/wifiBlack/CFNetで公開されている。
関連論文リスト
- Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
KCFI(Key Change Features and Instruction-tuned)によるリモートセンシング画像変換キャプションのための新しいフレームワークを提案する。
KCFIは、バイテンポラルリモートセンシング画像特徴を抽出するViTsエンコーダと、重要な変化領域を識別するキー特徴知覚器と、画素レベルの変化検出デコーダとを含む。
提案手法の有効性を検証するため,LEVIR-CCデータセット上のいくつかの最新の変更キャプション手法との比較を行った。
論文 参考訳(メタデータ) (2024-09-19T09:33:33Z) - Siamese Meets Diffusion Network: SMDNet for Enhanced Change Detection in
High-Resolution RS Imagery [7.767708235606408]
我々は,新しいネットワークであるSiamese-U2Net Feature Differential Meets Network (SMDNet)を提案する。
このネットワークは、画像エッジ変化検出の精度を向上させるために、Siam-U2Net Feature Differential (SU-FDE)とデノイング拡散暗黙モデルを組み合わせる。
特徴抽出モデルと拡散モデルを組み合わせることで,リモートセンシング画像における変化検出の有効性を示す。
論文 参考訳(メタデータ) (2024-01-17T16:48:55Z) - TINYCD: A (Not So) Deep Learning Model For Change Detection [68.8204255655161]
変化検出(CD)の目的は、同じ領域で発生した変化を異なる時間に撮影された2つの画像を比較して検出することである。
ディープラーニングの分野での最近の進歩により、研究者はこの分野で卓越した成果を得られるようになった。
我々はTinyCDと呼ばれる新しいモデルを提案し、軽量かつ効果的であることを実証した。
論文 参考訳(メタデータ) (2022-07-26T19:28:48Z) - Attention Consistency on Visual Corruptions for Single-Source Domain
Generalization [53.640469435173124]
視覚認識モデルを一般化するには、トレーニングセット内の過剰な相関に堅牢にする必要がある。
トレーニングイメージを変更して新しいドメインをシミュレートし、同じサンプルの異なるビューに対して一貫した視覚的注意を喚起することで、この目標を達成する。
私たちは我々のモデルAttention Consistency on Visual Corruptions (ACVC)と名付けた。
論文 参考訳(メタデータ) (2022-04-27T17:39:13Z) - Focal Modulation Networks [105.93086472906765]
自己注意(SA)は完全に焦点変調ネットワーク(FocalNet)に置き換えられる
ImageNet-1Kの精度は82.3%、83.9%である。
FocalNetsは下流のタスクに転送する際、顕著な優位性を示す。
論文 参考訳(メタデータ) (2022-03-22T17:54:50Z) - Glance and Focus Networks for Dynamic Visual Recognition [36.26856080976052]
画像認識問題を,人間の視覚系を模倣した逐次的粗い特徴学習プロセスとして定式化する。
提案したGlance and Focus Network(GFNet)は,まず低解像度スケールで入力画像の迅速なグローバルな表現を抽出し,その後,より微細な特徴を学習するために,一連の局所的(小さな)領域に戦略的に参画する。
これは、iPhone XS Max上の高効率のMobileNet-V3の平均遅延を、精度を犠牲にすることなく1.3倍削減する。
論文 参考訳(メタデータ) (2022-01-09T14:00:56Z) - VOLO: Vision Outlooker for Visual Recognition [148.12522298731807]
視覚変換器 (ViT) はイメージネット分類において自己注意に基づくモデルの可能性を示している。
我々は、新しい展望の展望を導入し、VoLO(Vision Outlooker)と呼ばれる、シンプルで一般的なアーキテクチャを提示する。
グローバルな依存性モデリングを粗いレベルで重視する自己注意とは異なり、展望はより詳細な機能やコンテキストをトークンに効率的にエンコードする。
実験の結果、私たちのVOLOはImageNet-1K分類で87.1%のトップ1の精度を達成しており、これはこの競合ベンチマークで87%以上の精度で最初のモデルである。
論文 参考訳(メタデータ) (2021-06-24T15:46:54Z) - FCCDN: Feature Constraint Network for VHR Image Change Detection [12.670734830806591]
本稿では,変更検出のための特徴制約変更検出ネットワーク(FCCDN)を提案する。
両時間的特徴抽出と特徴融合を両立させる。
2つのビルディング変更検出データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-23T06:13:47Z) - Bottleneck Transformers for Visual Recognition [97.16013761605254]
視覚タスクに自己注意を組み込んだ強力なバックボーンアーキテクチャであるBoTNetを提案する。
我々は、ImageNetベンチマークにおいて84.7%のトップ1の精度で高いパフォーマンスを達成するモデルを提案する。
私たちのシンプルで効果的なアプローチが、将来のビジョンのための自己注意モデル研究の強力なベースラインになることを期待しています。
論文 参考訳(メタデータ) (2021-01-27T18:55:27Z) - Looking for change? Roll the Dice and demand Attention [0.0]
高解像度空中画像における意味変化検出のための信頼性の高いディープラーニングフレームワークを提案する。
我々のフレームワークは、新しいロス関数、新しいアテンションモジュール、新しい機能抽出ビルディングブロック、新しいバックボーンアーキテクチャで構成されています。
我々は,2つの建物変更検出データセットに対して,優れた性能を示すとともに,美術スコア(F1とIoUに対するインターセクション)の達成状況を示すことによって,我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-09-04T08:30:25Z) - From W-Net to CDGAN: Bi-temporal Change Detection via Deep Learning
Techniques [43.58400031452662]
W-Netと呼ばれるエンドツーエンドのデュアルブランチアーキテクチャを提案し、各ブランチは2つのバイテンポラルイメージのうちの1つを入力として取り込む。
また、最近人気になったGAN(Generative Adversarial Network)を応用し、当社のW-Netがジェネレータとして機能している。
ネットワークをトレーニングし,今後の研究を促進するために,Google Earthから画像を収集して大規模なデータセットを構築する。
論文 参考訳(メタデータ) (2020-03-14T09:24:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。