論文の概要: GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training
- arxiv url: http://arxiv.org/abs/2503.08525v1
- Date: Tue, 11 Mar 2025 15:17:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:35.403568
- Title: GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training
- Title(参考訳): GTR:RLをベースとしたVLMエージェントトレーニングにおける思考の崩壊防止策
- Authors: Tong Wei, Yijun Yang, Junliang Xing, Yuanchun Shi, Zongqing Lu, Deheng Ye,
- Abstract要約: 検証結果報酬(RLVR)を用いた強化学習は、大規模言語モデル(LLM)におけるチェーン・オブ・ソート(CoT)推論を効果的にスケールアップした。
本研究は、24点やALFWorldの具体化タスクなど、複雑なカードゲームに関する広範な実験を通じてこの問題を調査する。
報酬が行動結果にのみ基づく場合、RLはVLMにおけるCoT推論の動機付けに失敗し、代わりに思考崩壊と呼ばれる現象が生じる。
- 参考スコア(独自算出の注目度): 62.536191233049614
- License:
- Abstract: Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs). Yet, its efficacy in training vision-language model (VLM) agents for goal-directed action reasoning in visual environments is less established. This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld. We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse, characterized by a rapid loss of diversity in the agent's thoughts, state-irrelevant and incomplete reasoning, and subsequent invalid actions, resulting in negative rewards. To counteract thought collapse, we highlight the necessity of process guidance and propose an automated corrector that evaluates and refines the agent's reasoning at each RL step. This simple and scalable GTR (Guided Thought Reinforcement) framework trains reasoning and action simultaneously without the need for dense, per-step human labeling. Our experiments demonstrate that GTR significantly enhances the performance and generalization of the LLaVA-7b model across various visual environments, achieving 3-5 times higher task success rates compared to SoTA models with notably smaller model sizes.
- Abstract(参考訳): 検証結果報酬(RLVR)を用いた強化学習は,大規模言語モデル(LLM)におけるチェーン・オブ・ソート(CoT)推論を効果的にスケールアップした。
しかし、視覚環境における目標指向行動推論のための視覚言語モデル(VLM)エージェントの訓練効果は低い。
本研究は、24点やALFWorldの具体化タスクなど、複雑なカードゲームに関する広範な実験を通じてこの問題を調査する。
報酬が行動結果のみに基づく場合、RLはVLMにおけるCoT推論の動機付けに失敗し、エージェントの思考の多様性の急激な低下、状態不適切で不完全な推論、そしてその後の無効な行動によって負の報酬が生じるという、私たちが思考崩壊と呼ぶ現象に繋がる。
思考崩壊に対処するため、プロセスガイダンスの必要性を強調し、各RLステップにおけるエージェントの推論を評価し、改善する自動修正器を提案する。
このシンプルでスケーラブルなGTR(Guided Thought Reinforcement)フレームワークは、密集したステップごとのラベル付けを必要とせず、推論と動作を同時に行う。
実験の結果、GTRは様々な視覚環境におけるLLaVA-7bモデルの性能と一般化を著しく向上させ、特にモデルサイズが小さいSoTAモデルに比べて3~5倍のタスク成功率を達成した。
関連論文リスト
- Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs [58.18140409409302]
大規模言語モデル (LLM) は強化学習 (RL) を通じて構造化タスクに大きく進歩した。
チャットボットやコンテンツ生成といった幅広い分野にRLを適用することは、ユニークな課題だ。
埋め込み型報酬モデルを用いた既存の報酬モデルアンサンブル研究の再現事例について述べる。
論文 参考訳(メタデータ) (2025-02-04T19:37:35Z) - Reflective Instruction Tuning: Mitigating Hallucinations in Large Vision-Language Models [36.119299938503936]
大規模視覚言語モデル(LVLM)は様々な視覚言語タスクにおいて有望な性能を示す。
幻覚に敏感であり、視覚内容や指示と不一致な出力を生成する。
本稿では,理科学習を視覚的指導調律に統合した反射的指導調律を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:32:45Z) - RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback [24.759613248409167]
リワードエンジニアリングは、強化学習研究における長年の課題である。
エージェントが新しいタスクを学習するための報酬関数を自動生成するRL-VLM-Fを提案する。
我々は、RL-VLM-Fが、様々な領域にまたがる効果的な報酬とポリシーを効果的に生成できることを実証した。
論文 参考訳(メタデータ) (2024-02-06T04:06:06Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
強化学習(RL)は、大規模言語モデル(LLM)の訓練に広く用いられている。
本稿では,報酬モデルとして生成モデルを組み込んだRL法 RLMEC を提案する。
生成報酬モデルに基づいて、トレーニングのためのトークンレベルRL目標と、RLプロセスの安定化のための模倣ベース正規化を設計する。
論文 参考訳(メタデータ) (2024-01-11T17:58:41Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
一般的に使われているアクションマッチングの原理は、RLエージェントの解釈よりもディープニューラルネットワーク(DNN)の説明に近いと論じられている。
本稿では,RLエージェントの主目的である報酬を,RLエージェントを解釈する本質的な目的として考察する。
我々は,Atari 2600 ゲームと,挑戦的な自動運転車シミュレータ環境である Duckietown の検証と評価を行った。
論文 参考訳(メタデータ) (2023-09-04T09:09:54Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Learning from Ambiguous Demonstrations with Self-Explanation Guided
Reinforcement Learning [20.263419567168388]
本研究の目的は、強化学習(RL)エージェントの訓練にあいまいなデモンストレーションを効果的に活用することである。
このような状況を人間がどう扱うかに触発されて、我々は価値ある高レベルな関係性の特徴を認識するために自己説明を使うことを提案する。
我々の主な貢献は、従来のRLfD作品の限界を克服できるDemonstrations (SERLfD)フレームワークからの自己説明(Self-Explanation for RL)を提案することである。
論文 参考訳(メタデータ) (2021-10-11T13:59:48Z) - Residual Reinforcement Learning from Demonstrations [51.56457466788513]
報酬信号の最大化のために,従来のフィードバックコントローラからの制御動作を適用することで,ロボット作業の課題を解決する手段として,残留強化学習(Residual reinforcement learning, RL)が提案されている。
視覚的インプットから学習するための残差定式化を拡張し,実演を用いて報酬をスパースする。
6-DoFのUR5アームと28-DoFのデキスタラスハンドのシミュレーション操作に関する実験的評価は、デモからの残留RLが、行動クローニングやRL微調整よりも柔軟に、見えない環境条件に一般化できることを実証している。
論文 参考訳(メタデータ) (2021-06-15T11:16:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。