NSF-SciFy: Mining the NSF Awards Database for Scientific Claims
- URL: http://arxiv.org/abs/2503.08600v2
- Date: Sat, 15 Mar 2025 21:25:43 GMT
- Title: NSF-SciFy: Mining the NSF Awards Database for Scientific Claims
- Authors: Delip Rao, Weiqiu You, Eric Wong, Chris Callison-Burch,
- Abstract summary: We present NSF-SciFy, a large-scale dataset for scientific claim extraction from the National Science Foundation (NSF) awards database.<n>We leverage grant abstracts which offer a unique advantage: they capture claims at an earlier stage in the research lifecycle before publication takes effect.<n>We also introduce a new task to distinguish between existing scientific claims and aspirational research intentions in proposals.
- Score: 43.102250589677126
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present NSF-SciFy, a large-scale dataset for scientific claim extraction derived from the National Science Foundation (NSF) awards database, comprising over 400K grant abstracts spanning five decades. While previous datasets relied on published literature, we leverage grant abstracts which offer a unique advantage: they capture claims at an earlier stage in the research lifecycle before publication takes effect. We also introduce a new task to distinguish between existing scientific claims and aspirational research intentions in proposals. Using zero-shot prompting with frontier large language models, we jointly extract 114K scientific claims and 145K investigation proposals from 16K grant abstracts in the materials science domain to create a focused subset called NSF-SciFy-MatSci. We use this dataset to evaluate 3 three key tasks: (1) technical to non-technical abstract generation, where models achieve high BERTScore (0.85+ F1); (2) scientific claim extraction, where fine-tuned models outperform base models by 100% relative improvement; and (3) investigation proposal extraction, showing 90%+ improvement with fine-tuning. We introduce novel LLM-based evaluation metrics for robust assessment of claim/proposal extraction quality. As the largest scientific claim dataset to date -- with an estimated 2.8 million claims across all STEM disciplines funded by the NSF -- NSF-SciFy enables new opportunities for claim verification and meta-scientific research. We publicly release all datasets, trained models, and evaluation code to facilitate further research.
Related papers
- ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined.
We introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery.
We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers.
arXiv Detail & Related papers (2025-03-27T08:09:15Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - Dataset Mention Extraction in Scientific Articles Using Bi-LSTM-CRF Model [0.0]
We show that citing datasets is not a common or standard practice in spite of recent efforts by data repositories and funding agencies.
A potential solution to this problem is to automatically extract dataset mentions from scientific articles.
In this work, we propose to achieve such extraction by using a neural network based on a Bi-LSTM-CRF architecture.
arXiv Detail & Related papers (2024-05-21T18:12:37Z) - Large Language Models for Automated Open-domain Scientific Hypotheses Discovery [50.40483334131271]
This work proposes the first dataset for social science academic hypotheses discovery.
Unlike previous settings, the new dataset requires (1) using open-domain data (raw web corpus) as observations; and (2) proposing hypotheses even new to humanity.
A multi- module framework is developed for the task, including three different feedback mechanisms to boost performance.
arXiv Detail & Related papers (2023-09-06T05:19:41Z) - A Pipeline for Analysing Grant Applications [0.0]
This paper investigates whether grant schemes successfully identifies innovative project proposals, as intended.
Grant applications are peer-reviewed research proposals that include specific innovation and creativity'' (IC) scores assigned by reviewers.
We propose a model with the best performance, a Random Forest (RF) classifier over documents encoded with features.
arXiv Detail & Related papers (2022-10-30T13:43:53Z) - SciFact-Open: Towards open-domain scientific claim verification [61.288725621156864]
We present SciFact-Open, a new test collection designed to evaluate the performance of scientific claim verification systems.
We collect evidence for scientific claims by pooling and annotating the top predictions of four state-of-the-art scientific claim verification models.
We find that systems developed on smaller corpora struggle to generalize to SciFact-Open, exhibiting performance drops of at least 15 F1.
arXiv Detail & Related papers (2022-10-25T05:45:00Z) - TDMSci: A Specialized Corpus for Scientific Literature Entity Tagging of
Tasks Datasets and Metrics [32.4845534482475]
We present a new corpus that contains domain expert annotations for Task (T), dataset (D), Metric (M) entities on 2,000 sentences extracted from NLP papers.
We report experiment results on TDM extraction using a simple data augmentation strategy and apply our tagger to around 30,000 NLP papers from the ACL.
arXiv Detail & Related papers (2021-01-25T17:54:06Z) - Fact or Fiction: Verifying Scientific Claims [53.29101835904273]
We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUPPORTS or REFUTES a given scientific claim.
We construct SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales.
We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus.
arXiv Detail & Related papers (2020-04-30T17:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.