Generating Robot Constitutions & Benchmarks for Semantic Safety
- URL: http://arxiv.org/abs/2503.08663v1
- Date: Tue, 11 Mar 2025 17:50:47 GMT
- Title: Generating Robot Constitutions & Benchmarks for Semantic Safety
- Authors: Pierre Sermanet, Anirudha Majumdar, Alex Irpan, Dmitry Kalashnikov, Vikas Sindhwani,
- Abstract summary: We release the ASIMOV Benchmark for evaluating semantic safety of robot brains.<n>We develop a framework to automatically generate robot constitutions from real-world data.<n>We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior.
- Score: 22.889717765617394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io
Related papers
- SciFi-Benchmark: How Would AI-Powered Robots Behave in Science Fiction Literature? [20.51881907653089]
We generate a benchmark spanning the key moments in 824 pieces of science fiction literature.
We use a LLM's recollection of each key moment to generate questions in similar situations.
We then measure an approximation of how well models align with human values on a set of human-voted answers.
arXiv Detail & Related papers (2025-03-12T16:35:51Z) - GNN-based Decentralized Perception in Multirobot Systems for Predicting Worker Actions [12.260881600042374]
This paper introduces a perception framework that enables mobile robots to understand and share information about human actions in a decentralized way.<n>A swarm-inspired decision-making process is used to ensure all robots agree on a unified interpretation of the human's actions.
arXiv Detail & Related papers (2025-01-08T00:06:38Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Know your limits! Optimize the robot's behavior through self-awareness [11.021217430606042]
Recent human-robot imitation algorithms focus on following a reference human motion with high precision.
We introduce a deep-learning model that anticipates the robot's performance when imitating a given reference.
Our Self-AWare model (SAW) ranks potential robot behaviors based on various criteria, such as fall likelihood, adherence to the reference motion, and smoothness.
arXiv Detail & Related papers (2024-09-16T14:14:58Z) - GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Cybersecurity and Embodiment Integrity for Modern Robots: A Conceptual Framework [3.29295880899738]
We show how cyberattacks on different devices can have radically different consequences on the robot's ability to complete its tasks.
We also claim that modern robots should have self-awareness for what it concerns such aspects.
We show that achieving these propositions requires that robots possess at least three properties that conceptually link devices and tasks.
arXiv Detail & Related papers (2024-01-15T15:46:38Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.